VNP02MOD - VIIRS/NPP Moderate Resolution 6-Min L1B Swath 750m
VNP02MOD is the short-name for the Suomi National Polar-orbiting Partnership (SNPP) platform-based NASA VIIRS L1B calibrated radiances product derived from the sixteen moderate-resolution or M-bands, which have a spatial resolution of 750-meters at nadir. These M-bands comprise eleven reflective solar bands (RSB) and five thermal emissive bands (TEB). Each of the M-bands has 16 detectors in the along-track direction with 16 rows of pixels per scan that provide a 750-m resolution. Ranging in wavelengths from 0.402 µm to 12.49 µm, the M-bands are sensitive to visible, near-, shortwave-, mediumwave-, and longwave-infrared wavelengths. Derived from the NASA VIIRS L1A raw radiances, this product includes calibrated and geolocated radiance and reflectance data, quality flags, and granule- and collection-level metadata. In contrast to a MODIS L1B product, which temporally spans 5 minutes, the VIIRS L1B calibrated radiances product contains a nominal temporal duration of 6 minutes. The image dimensions of the 750-m swath product measure 3232 lines by 3200 pixels.
Traceability for reference-based instrument calibration and measurement uncertainty
Traceability relates to how an instrument’s uncertainty measurements were calibrated using reference sources whose absolute radiometric performance is well-known and understood relative to the International System of Units (SI). This usually happens in the pre-launch calibration phase using a national laboratory’s standard sources, and later corroborated as part of the on-orbit validation activities in the post-launch phase.
The SNPP VIIRS instrument’s pre-launch radiometric calibration was accomplished through measurements that are traceable to the National Institute of Standards and Technology (NIST), and its post-launch on-orbit characterizations are based on data derived from the VIIRS’ on-board calibrators.
VIIRS Level-1B measurement uncertainty
The NASA VIIRS Characterization Support Team has developed VIIRS L1B measurement uncertainty algorithms that are designed to empirically derive measurement uncertainty values from the output L1B products to compare against the recommended values in the VIIRS Sensor Specifications that are detailed in the VIIRS ATBD. These measurement uncertainty algorithms are slated for implementation by the end of 2022. Subsequently, we should have data-derived measurement uncertainty values as part of the L1B product itself.
Radiometric accuracy
Radiometric accuracy forms a key requirement that enables us to derive good quality L2 retrievals, and provide the basis for higher-level products. The SNPP VIIRS instrument’s radiometric accuracy is characterized for each of its three spectral band groups:
Reflective Solar Bands: Based on the VIIRS Sensor Specifications, the VIIRS reflective solar bands’ calibration uncertainty for spectral reflectance over a scene with typical radiance is defined at less than 2%.
Thermal Emissive Bands: Given a uniform scene with 267 K brightness temperature (for image and emissive bands), the specified calibration uncertainty for spectral radiance is defined at 5% for Image band-4 and 2.5% for Image band-5.
Day-Night Band: The DNB’s defined radiometric calibration uncertainty for the effective in-band radiance over a uniform scene is gain-state dependent.
Links
- Search for Product Files
- Data Archive
- VIIRS Level-1 Change Summary
- VIIRS L1B User Guide - version 3
- VIIRS L1B Calibration ATBD
- VIIRS L1B Geolocation ATBD
- DOI: 10.5067/VIIRS/VNP02MOD.002
Shortname: | VNP02MOD |
Platform: | Suomi-NPP |
Instrument: | VIIRS |
Processing Level: | Level-1B |
Data Format: | netCDF4/HDF5 |
Spatial Resolution: | 750 m |
Temporal Resolution: | 6 minute |
ArchiveSets: | 5200, 5110 |
Collection: | NPP and JPSS1 VIIRS data 2.0 (ArchiveSet 5200) |
PGE Number: | PGE502 |
File Naming Convention: | Syntax: ESDT.AYYYYDDD.HHMM.CCC.YYYYDDDHHMMSS.Format
|
Keywords: | SNPP VIIRS, L1B, Moderate resolution, M-bands, Calibrated Radiances |