Black Marble User Guide (Version 1.3) ## Product's Principal Investigator: Zhuosen Wang List of Contributors: Miguel O. Román, Ranjay Shrestha, Tian Yao, and Virginia Kalb. September 2022 ## **Contents** | 1 Introduction | 1 | |--|----| | 2 Algorithm | 2 | | 2.1 Overview of the Algorithm | 2 | | 2.2 Atmospheric Correction | 3 | | 2.3 BRDF Correction | 4 | | 2.3 Seasonal Vegetation Correction | 5 | | 2.4 Monthly and Yearly Nighttime Light Composite | 6 | | 3 Data Product Formats | 7 | | 3.1 Metadata | 7 | | 3.2 Filenames | 7 | | 3.3 Projection | 8 | | 4. Product generation | 8 | | 5 Scientific Data Sets (SDSs) from Black Marble Product Suite | 11 | | 5.1 The VNP46A1/VJ146A1 Daily At-sensor TOA Nighttime Lights Product | 11 | | 5.2 The VNP46A2/VJ146A2 Daily Moonlight-adjusted Nighttime Lights (NTL) Product | 16 | | 5.3 The VNP46A3/VJ146A3 Monthly and VNP46A4/VJ146A4 Yearly Moonlight-adjusted Night Lights (NTL) Product | | | 5.4 Examples of the Black Marble Product Suite | 23 | | 6 Evaluation and Validation of the Product | 26 | | 7 Data Archives | 29 | | 8 Data Usage and Citation Policies | 29 | | 9 Contact Information | 29 | | 10 Related Publications | 29 | | References | 31 | | Appendix A: Metadata (Attributes) in VNP46A1 Product | 39 | | Appendix B: Metadata (Attributes) in VNP46A2 Product | 43 | | Appendix C: Metadata (Attributes) in VNP46A3 Product | 45 | | Appendix D: Metadata (Attributes) in VNP46A4 Product | 52 | ## **List of Figures** | Figure 1 Overview of NASA's Black Marble retrieval strategy (cf., Equation 1). During the ~50% poof the lunar cycle when moonlight is present at the time of satellite observation, the surface upward radiance from artificial light emissions, L_{NTL} [units of nWatts·cm ⁻² ·sr ⁻¹], can be extracted from at-se nighttime radiance at TOA (L_{DNB}). L_{path} is the nighttime path radiance, $a(\theta_m)$ is the VIIRS-derived ac surface albedo. The atmospheric backscatter is given by ρ_a . $T_+(\tau,\theta_v)$ and $T_+(\tau,\theta_v)$ are the total transmittances along the lunar-ground and ground-sensor paths (respectively). $P_+(\theta_v)$ is the probability of the upward transmission of NTL emissions through the urban vegetation canopy | nsor
etual | |---|----------------| | Figure 2 The Suomi-NPP VIIRS linear latitude/longitude (or geographic) grid consists of 460 non-overlapping Land tiles, which measure approximately 10°×10° region. | 8 | | Figure 3 Algorithm processing cycle and ancillary parameters used by NASA's Black Marble produ suite. | | | Figure 4 Black Marble product suite components for a 10° × 10° Level 3 tile over France and the Ba Sea region (h18v04; DOY 2015-091). The full-moon-illuminated and 51% cloud-contaminated scen illustrates the challenges of nighttime cloud masking over snow-covered surfaces (e.g., the French A and the Pyrenees). | ie
Alps | | Figure 5 VNP46 product suite components for a 10° × 10° Level 3 tile over Sweden and Finland (h2 DOY 2013-080). The half-moon-illuminated and 30% cloud-contaminated scene is shown to capture extraneous light emissions north of the Gulf of Bothnia caused by the Aurora Borealis | e | | Figure 6 VNP46A3 monthly (upper) and VNP46A4 yearly (bottom) NTL composite (left), the asso number of observations for the composite (middle) and quality (right) for a 10° × 10° Level 3 tile h0 in 2016. | 6v05 | | Figure 7 The NTL radiance at the Pitahaya farmland site in Cabo Rojo, PR on 1st, 2nd and 3rd Marc 2017. The top-right image shows the setup of the stable point source. TOA and VNP46A2 values are $nW \cdot cm^{-2} \cdot sr^{-1}$. VCM = 0 represents cloud free overpasses. LZA is lunar zenith angle, and the values than 108° correspond to moonless nights | e in
larger | ## **List of Tables** | Table 1 Black Marble VNP46A1 product input files | 9 | |--|----| | Table 2 Black Marble VNP46A2 product input files | 9 | | Table 3 Scientific datasets included in the VNP46A1/VJ146A1 daily at-sensor TOA nighttime radiance | ; | | product. | 12 | | Table 4 Value of QF_Cloud_Mask in the VNP46A1/VJ146A1 product | 14 | | Table 5 Value of QF_DNB and QF of VIIRS band M10/11/12/13/15/16 in the VNP46A1/VJ146A1 | | | product | 15 | | Table 6 Scientific datasets included in VNP46A2/VJ146A2 daily moonlight-adjusted NTL product | 16 | | Table 7 Values of the Mandatory_Quality_Flag in VNP46A2/VJ146A2 product | 17 | | Table 8 Values of the Snow_Flag in VNP46A2/VJ146A2 product | 17 | | Table 9 Key performance metrics established for NASA's Black Marble product suite | 27 | ## Acronyms | AERONET | Aerosol Robotic Network | |-------------|--| | AOD | Aerosol Optical Depth | | BRDF | Bidirectional Reflectance Distribution Function | | BRF | Bidirectional Reflectance Factor | | DMSP | Defense Meteorological Satellite Program | | DNB | Day/Night Band | | EOS | Earth Observing System | | GEO | Group on Earth Observations | | GIS | Geographic Information System | | HAM | Half-angle Mirror | | HDF-EOS | Hierarchical Data Format - Earth Observing System | | IR | Infrared | | L1B | Level-1 B | | L2G | Level-2 Gridded | | LAI | Leaf Area Index | | LANCE | The Land, Atmosphere Near real-time Capability for EOS | | LZA | Lunar Zenith Angle | | JPSS | Joint Polar Satellite System | | NASA | National Aeronautics and Space Administration | | NBAR | National Aeronautics and Space Administration Nadir BRDF-Adjusted Reflectance | | NCEP | National Centers for Environmental Prediction | | NDVI | | | NDSI | Normalized Difference Vegetation Index Normalized Difference Snow Index | | | Normanized Difference Show findex Near-infrared | | NIR
NRT | Near Real-Time | | NTL | Near Real-Time Nighttime Lights | | nW | Nanowatt (One billionth (10 ⁻⁹) of a watt) | | | | | Pgap
PGE | Gap Fraction Probability Product Generation Executable | | PRWGLP | | | | Puerto Rico's Working Group on Light Pollution | | QA | Quality Assurance | | QF | Quality Flag | | RTA | Rotating Telescope Assembly | | SDS | Scientific Data Set | | SIPS | Science Investigator-led Processing System | | S-NPP | Suomi National Polar-orbiting Platform | | TOA | Top of Atmosphere | | UTC | Coordinated Universal Time | | VCM | VIIRS Cloud Mask | | VCST | VIIRS Calibration Support Team | | VIIRS | Visible Infrared Imaging Radiometer Suite | | VNP09 | VIIRS Surface Reflectance product | | VNP46 | NASA's Black Marble nighttime lights product suite | | VNP46A1 | Suomi-NPP Daily at-sensor TOA nighttime lights product | | VNP46A2 | Suomi-NPP Daily moonlight-adjusted nighttime lights product | | VNP46A3 | Suomi-NPP Monthly moonlight-adjusted nighttime lights product | | VNP46A4 | Suomi-NPP Yearly moonlight-adjusted nighttime lights product | | VJ146A1 | NOAA-20/JPSS-1 Daily at-sensor TOA nighttime lights product | |---------|--| | VJ146A2 | NOAA-20/JPSS-1 Daily moonlight-adjusted nighttime lights product | | VJ146A3 | NOAA-20/JPSS-1 Monthly moonlight-adjusted nighttime lights product | | VJ146A4 | NOAA-20/JPSS-1 Yearly moonlight-adjusted nighttime lights product | #### 1 Introduction The Day/Night Band (DNB) sensor of the Visible Infrared Imaging Radiometer Suite (VIIRS), on-board the Suomi-National Polar-orbiting Partnership (S-NPP) and Joint Polar Satellite System (JPSS) satellite platforms, provides global daily measurements of nocturnal visible and near-infrared (NIR) light that are suitable for Earth system science and applications studies. The VIIRS DNB's ultra-sensitivity in lowlight conditions allows for the generation of new science-quality nighttime products as a result of significant improvements to sensor resolution and calibration compared to those provided previously by the Defense Meteorological Satellite Program's (DMSP) generation of nighttime lights imagery. These improvements allow us to better monitor both the magnitude and signature of nighttime phenomena and anthropogenic sources of light emissions. Since the launch of the S-NPP satellite in 2011, multiple studies have used the VIIRS DNB as the primary data source in a wide range of study topics. They include: (1) feature extraction techniques to detect severe weather impacts to urban infrastructure (Cao et al., 2013; Cole et al., 2017; Mann et al., 2016; Molthan and Jedlovec, 2013); (2) detection of sub-pixel scale features, e.g., fires (Polivka et al., 2016), shipping vessels (Asanuma et al., 2016; Elvidge et al., 2015; Straka et al., 2015), lightning flashes (Bankert et al., 2011), surface oil slicks (Hu et al., 2015), and gas flares (Elvidge et al., 2015; Liu et al., 2017, Liu et al., 2017); and (3) techniques for monitoring nighttime atmospheric optical properties, including clouds (Minnis et al., 2016; Walther et al., 2013), aerosols (Johnson et al., 2013; McHardy et al., 2015), particulate matter (Wang et al., 2016), and gravity waves in the upper atmosphere via nightglow (Miller et al., 2015). As
with early research that utilized the DMSP 's Operational Line Scanner (OLS) (Huang et al., 2014), recent studies using the VIIRS DNB have employed statistical analyses and correlation discovery methods to confirm established empirical relationships with a wide range of human-linked patterns and processes. They include socioeconomic variables (Chen and Nordhaus, 2015; Chen et al., 2015; Levin and Zhang, 2017; Li et al., 2013; Ma et al., 2014; Shi et al., 2014; Yu et al., 2015), as well as changes driven by urban expansion (Guo et al., 2015; Sharma et al., 2016; Shi et al., 2014), energy use (Coscieme et al., 2014; Román and Stokes, 2015), and carbon emissions (Oda et al., 2017; Ou et al., 2015). To realize the full potential of the VIIRS DNB time series record, NASA has developed a new suite of standard products that represent the current state-of-the-art in nighttime lights (NTL) applications, NASA's Black Marble product suite (VNP46/VJ146). NASA's Black Marble nighttime lights product, at 15 arc-second spatial resolution, is available from January 2012-present with data from the VIIRS DNB sensor. The VNP46/VJ146 product suite is being processed on a daily basis within 3-5 hours of acquisition, which enables both near-real-time uses and long-term monitoring applications. The VNP46/VJ146 product suite includes the daily at-sensor top of atmosphere (TOA) nighttime lights (NTL) product (VNP46A1/VJ146A1), daily moonlight-adjusted nighttime lights product (VNP46A2/VJ146A2), monthly moonlight-adjusted nighttime lights product (VNP46A3/VJ146A3), and yearly moonlight-adjusted nighttime lights product (VNP46A4/VJ146A4). The retrieval algorithm, developed and implemented for routine global processing at NASA's Land Science Investigator-led Processing System (SIPS), utilizes all high-quality, cloud-free, atmospheric-, terrain-, vegetation-, snow-, lunar-, and stray light-corrected radiance to estimate daily nighttime lights and other intrinsic surface optical properties. The VIIRS Black Marble product has been used for global mapping of human activity patterns, such as tracking shipping and fishing vessels, gas flares, in addition to their application to humanitarian efforts, such as assessment of conflict-associated demographic changes and mapping impoverishment. This user guide provides an overview of NASA's new VIIRS Level 3 Black Marble nighttime lights product suite (VNP46) to users. This document describes the theoretical basis for the algorithms, the operational processing, evaluation and validation of the product, and how to access the product. Additional details are available in related publications in section 10. ## 2 Algorithm ## 2.1 Overview of the Algorithm NASA's operational Black Marble product suite ingests multiple-source input datasets and ancillary data to output the highest quality pixel-based estimates of NTL. These NTL estimates are accompanied by pixel-level quality flags. The principal features of the algorithm are summarized in the following sections. More details of the algorithm are available in related publications in section 10. NASA's Black Marble algorithm produces cloud-free images that have been corrected for atmospheric, terrain, lunar BRDF, thermal, and straylight effects. The corrected nighttime radiance, resulting in a superior retrieval of nighttime lights at short time scales and a reduction in background noise, enables quantitative detection and analyses of daily, seasonal and annual variations. Key algorithm enhancements include: (1) lunar irradiance modeling to resolve non-linear changes in phase and libration; (2) vector radiative transfer and lunar bidirectional surface anisotropic reflectance modeling to correct for atmospheric and bidirectional reflectance distribution function (BRDF) effects; (3) geometric-optical and canopy radiative transfer modeling to account for seasonal variations in NTL; and (4) temporal gap-filling to reduce persistent data gaps. #### 2.2 Atmospheric Correction NASA's Black Marble retrieval strategy combines daytime VIIRS DNB surface reflectance, BRDF, surface albedo, nadir BRDF-adjusted reflectance (NBAR), and lunar irradiance values to minimize the biases caused by extraneous artifacts in the VIIRS NTL time series record. Using this novel "turning off the Moon" approach, illustrated in Figure 1, the upward surface radiance from artificial light emissions, L_{NTL} [units of nWatts·cm⁻²·sr⁻¹], can be extracted from at-sensor nighttime radiance at TOA, L_{DNB} , using the following equation: $$L_{\text{NTL}} = \left[\left(\frac{L_{DNB} - L_{path}}{T_{\uparrow}(\tau\theta_{v})} \right) (1 - a(\theta_{m})\rho_{a}) - L_{m}T_{\downarrow}(\tau\theta_{v}) \right] / P_{\uparrow}(\theta_{v})$$ (1) where L_{path} is the nighttime path radiance (i.e., the radiance generated by scattering within the atmosphere), and $a(\theta_m)$ is the VIIRS-derived actual (or blue-sky) surface albedo; incorporating the directional influence of sky radiance and multiple scattering effects between the ground and the atmosphere (Román et al., 2010). For the latter, a snow albedo retrieval scheme is used if the VIIRS current day snow status flag is activated (Klein and Stroeve, 2002; Liu et al., 2017, Liu et al., 2017; Moustafa et al., 2017; Wang et al., 2012). $P_1(\theta_v)$ is the probability of the upward transmission of NTL emissions through the urban vegetation canopy, defined in Equation 4. The atmospheric backscatter is given by ρ_a , and $T_{\downarrow}(\tau,\theta_{\nu})$ and $T_{\uparrow}(\tau,\theta_{\nu})$ are the total transmittance (including direct and diffuse radiation) along the lunar-ground and ground-sensor paths, respectively. The latter two are a function of viewillumination geometry and the total atmospheric column optical depth (τ) due to mixed gases, water vapor, and aerosol particles. The retrieval uses a modified algorithm based on the VIIRS Surface Reflectance product (VNP09) to estimate the values of L_{path} , ρ_a , $T_{\downarrow}(\tau,\theta_{\nu})$, and $T_{\uparrow}(\tau,\theta_{\nu})$ for a given set of surface and atmospheric conditions (Roger et al., 2016; Skakun et al., 2018). Additional input datasets include the standard VIIRS Cloud Mask (VCM) (Kopp et al., 2014), atmospheric profiles obtained from the National Centers for Environmental Prediction (NCEP) model (i.e., water vapor, ozone, and surface pressure) (Moorthi et al., 2001), and the VIIRS aerosol model combined with daytime-to-daytime averaged aerosol optical depth (AOD) at 0.550 µm to extrapolate the nighttime AOD. **Figure 1** Overview of NASA's Black Marble retrieval strategy (cf., Equation 1). During the ~50% portion of the lunar cycle when moonlight is present at the time of satellite observation, the surface upward radiance from artificial light emissions, L_{NTL} [units of nWatts·cm⁻²·sr⁻¹], can be extracted from at-sensor nighttime radiance at TOA (L_{DNB}). L_{path} is the nighttime path radiance, $a(\theta_m)$ is the VIIRS-derived actual surface albedo. The atmospheric backscatter is given by ρ_a . $T_{\downarrow}(\tau,\theta_v)$ and $T_{\uparrow}(\tau,\theta_v)$ are the total transmittances along the lunar-ground and ground-sensor paths (respectively). $P_{\uparrow}(\theta_v)$ is the probability of the upward transmission of NTL emissions through the urban vegetation canopy. #### 2.3 BRDF Correction The Black Marble algorithm estimates the actual moonlight, aerosol, and surface albedo contribution through analytical BRDF model inversion. This model has proven effective in removing biases introduced by extraneous sources of nighttime light emissions. The surface BRDF, or reflectance anisotropy is governed by the angle and intensity of illumination — whether that illumination is solar or lunar or from airglow — and by the structural complexity of the surface, resulting in variations in brightly illuminated regions and highly shadowed areas. The semi-empirical RossThick-LiSparse Reciprocal (RTLSR, or Ross-Li) BRDF model (Román et al., 2010; Roujean et al., 1992; Schaaf et al., 2002, Schaaf et al., 2011; Strahler et al., 1999) is advantageous in this regard since (1) it is the most likely kernel-driven combination to capture the wide range of conditions affecting the VIIRS DNB on a global basis; (2) it allows robust analytical model inversion with a pixel-specific estimate of the uncertainty in the model parameters and linear combinations thereof (Lucht and Roujean, 2000); and (3) the scheme is flexible enough to allow us to easily adapt other kernels should any become available, and demonstrate its superiority for a particular scenario. For VIIRS DNB acquisitions over snow-free and snow-covered surfaces, we define the spectral radiance contribution from moonlight, L_m , $$L_{m}(\Omega_{v}, \Omega_{m}, \Lambda) = \frac{E_{m}(\Lambda)}{\pi} BRF(\Omega_{v}, \Omega_{m}, \Lambda) \cos(\theta_{m})$$ (2) in terms of the Ross-Li model: $$BRDF(\Omega_{v}, \Omega_{m}, \Lambda) \approx \frac{BRF(\Omega_{v}, \Omega_{m}, \Lambda)}{\pi} = f_{iso}(\Lambda) + f_{vol}(\Lambda)K_{vol}(\Omega_{v}, \Omega_{m}) + f_{geo}(\Lambda)K_{geo}(\Omega_{v}, \Omega_{m})$$ (3) Here, we define the wavelength for the narrowband instrument of interest as the weighted center, Λ , of the VIIRS DNB spectral band [0.5–0.9 µm]. Parameter $f_{iso}(\Lambda)$ is the isotropic scattering component and equal to the bidirectional reflectance for a pixel viewing zenith angle $\theta_v = 0$ and a lunar zenith angle $\theta_m = 0$. Parameter $f_{geo}(\Lambda)$ is the coefficient of the LiSparse-reciprocal geometric scattering kernel K_{geo} , derived for a sparse ensemble of surface casting shadows on a Lambertian background (Li and Strahler, 1992). Parameter $f_{vol}(\Lambda)$ is the coefficient for the RossThick volume scattering kernel K_{vol} , so-called for its assumption of a dense leaf canopy (Ross, 2012). To achieve a high-quality BRDF retrieval, NASA's Black
Marble algorithm collects all available daytime, atmospherically-corrected, VIIRS DNB bidirectional reflectance factor (BRF) over a multi-date period (normally 16-days) to establish the analytical solution for the Ross-Li BRDF model parameter values, $f_k(\Lambda)$. Note that during moon-free nights, when atmospheric airglow is the dominant emission source, the VNP46 algorithm sets the illumination geometry to near-nadir ($\theta_m = 10^\circ$) and the lunar irradiance to $E_m(\Lambda) = 0.26 \text{ nW} \cdot \text{m}^{-2}$ (Liao et al., 2013). This enables a BRDF correction even in the absence of moonlight. #### 2.3 Seasonal Vegetation Correction Another known source of uncertainty in retrieving satellite-derived NTL is the influence of canopy-level foliage within the ground-to-sensor geometry path (Román and Stokes, 2015). This effect, which has been shown to reduce the magnitude of NTL at city-wide scales (Levin, 2017; Levin and Zhang, 2017), is most pronounced in temperate urban regions, where mixed and deciduous vegetation are most pervasive. Given its seasonal dependence, this occlusion effect (obscuration of surface light by foliage) should be proportional in magnitude to the density and vertical distribution pattern of leaves within a given VIIRS DNB pixel. Hence, while the effect may be non-linear (due to the confluence of factors that control the seasonality, physiognomy, and vertical distribution of urban vegetation canopies), the effect can be parameterized using analytical models, which aim to retrieve canopy structure parameters from multiangle remote sensing data (Chopping, 2006). With this concept in mind, we are employing a vegetation dispersion parameter, known as the clumping index, ψ , to parameterize the confined distribution of foliage within distinct canopy structures (Chen et al., 2005; Chen and Black, 1991; Jiao et al., 2018; Leblanc et al., 2005; Nilson, 1971): $$P_{\uparrow}(\theta_{v}) = e^{-\psi G(\theta_{v})LAI}/\cos(\theta_{v}) \tag{4}$$ Here, $P_{\uparrow}(\theta_{\nu})$ is the probability of the upward transmission of NTL emissions through the urban vegetation canopy (known as the gap fraction probability and hereafter termed the P_{gap} equation), $G(\theta_{\nu})$ is the extinction coefficient that expresses the mean area projection of plant elements in the direction θ_{ν} (being 0.5 for canopies with a random distribution of leaf angles), and LAI is the Leaf Area Index. The P_{gap} equation can be inverted from available daily VIIRS BRDF-derived clumping index values, as done in Hill et al. (2011) and He et al. (2012). The VIIRS LAI retrievals are based on the current standard product (VNP15) (Park et al., 2017). In case of poor-quality or missing LAI values (*e.g.*, when LAI is not retrieved over dense urban areas), we are employing the VIIRS LAI backup algorithm by using a look-up table (LUT) (Knyazikhin et al., 1999; Xiao et al., 2016) with normalized difference vegetation index (NDVI) generated from high-quality retrievals from the VIIRS NBAR product (Shuai et al., 2013). #### 2.4 Monthly and Yearly Nighttime Light Composite Monthly and yearly NTL composites (Wang et al., 2022) are generated from daily atmospherically- and lunar-BRDF-corrected NTL radiance to remove the influence of extraneous artifacts and biases. NTL outliers are excluded according to Boxplot metrics (Tukey 1977). The observations that fall out of the range of Q1 -1.5*IQR and Q3 + 1.5*IQR are identified as outliers and excluded from the NTL composite. Interquartile range (IQR) score is the range between 25th (Q1) and the 75th (Q3) percentile. Unlike Z-score (Kreyszig 1979), the IQR score method does not require normal distribution of the observations. The monthly and yearly NTL composite are then calculated from the mean values of the remaining observations. To remove any residual background noise, the NTL composite values with radiances less than 0.5 nW·cm⁻²·sr⁻¹ are set to zero. Aurora-contaminated pixels are filled with gap-filled values. User's should be aware that artificial lights derived from VIIRS DNB data show a strong angular effect (Li et al., 2019; Wang et al., 2021), impacting retrievals, particularly across dense urban centers where NTL radiance at nadir can be significantly higher than off-nadir observations. The presence of nighttime snow also enhances the scattering of reflected NTL due to the increased surface reflectance. Accordingly, NASA's Black Marble monthly and yearly NTL composites are generated for multiple view-angle categories (i.e., near-nadir, off-nadir, and all angles) and snow status (snow-covered and snow-free) along with ancillary metrics of standard deviation, the number of observations, and mandatory QA flags. Users are encouraged to carefully use these NTL composite values (either separately or jointly) to meet their specific science research and application needs. #### 3 Data Product Formats NASA's Black Marble product suite includes the daily at-sensor TOA nighttime radiance (VNP46A1/VJ146A1), the daily moonlight and atmosphere-corrected NTL (VNP46A2/VJ146A2), monthly moonlight and atmosphere-corrected NTL (VNP46A3/VJ146A3), and yearly moonlight and atmosphere-corrected NTL (VNP46A4/VJ146A4) products at a 15 arc-second geographic linear latitude/longitude (lat/lon) grid. The data are provided in the standard land Hierarchical Data Format - Earth Observing System (HDF-EOS) format. #### 3.1 Metadata Metadata (data attributes) provide information about data acquisition, input products, geographic location, the output of the data product, satellite instrument, processing environment, and other aspects of the retrieval. More details of the VNP46A1/VJ146A1, VNP46A2/VJ146A2, VNP46A3/VJ146A3, and VNP46A4/VJ146A4 product metadata are listed in Appendix A, B, C, and D. #### 3.2 Filenames The filenames follow a naming convention, which gives useful information regarding the specific product. For example, the filename VNP46A1.A2015001.h08v05.001.2017012234657.h5 indicates: - (1) VNP46A1: Product Short Name; - (2) A2015001: Julian Date of Acquisition (A-YYYYDDD); - (3) h08v05: Tile Identifier (horizontalXXverticalYY); - (4) .001: Collection Version; - (5) .2017012234657: Julian Date of Production (YYYYDDDHHMMSS); - (6) .h5: Data Format (HDF5). #### 3.3 Projection NASA's Black Marble product suite employs the standard VIIRS science algorithms and software that produce the DNB standard (radiance-based) products, and their corresponding ancillary layers in gridded (Level 2G, Level 3) linear lat/lon format (Figure 2). The gridding algorithms were modified to work with the VIIRS DNB's unique viewing geometry, which, unlike the VIIRS moderate and imagery bands, has a ground pixel footprint at a nearly constant size (742 m). The rationale behind the VIIRS DNB gridding approach is to select the nighttime observations from available 6-min swath granules (2366 km along track, ~3100 km across-track), that are of high quality as indicated by the quality flags, and are the least affected by cloud cover and off-nadir viewing observations. The goal is to increase signal-to-noise, while maximizing coverage within a cell of the gridded projection (Tan et al., 2006; Wolfe et al., 2002). By implementing this combined gridding strategy and geographic linear lat/lon projection formats, we seek to improve the efficiency of processing and reprocessing the VNP46 product suite, preserve the satellite location and observation footprints, while also enabling the ingest of the products into accessible software for geographic information system (GIS)-friendly analysis and mapping. **Figure 2** The Suomi-NPP VIIRS linear latitude/longitude (or geographic) grid consists of 460 non-overlapping Land tiles, which measure approximately 10°×10° region. ## 4. Product generation Data product inputs to NASA's Black Marble algorithm are listed in Table 1 and Table 2. The algorithm processing flow is depicted in Figure 3. The algorithm processing cycle is divided into daytime and nighttime branches, and each processing branch produces a unique set of ancillary and quality assurance (QA) flags. Table 1 Black Marble VNP46A1 product input files | Input File | Description | |-------------------------------------|---| | VNP02DNB | VIIRS/NPP Day/Night Band 6-Min L1B Swath 750m (L1B DNB) | | VNP02MOD | VIIRS/NPP Moderate Resolution 6-Min L1B Swath 750m (L1B moderate bands) | | NPP DNBN* | VIIRS L2G DNB radiance | | NPP DNBN angles* | VIIRS L2G DNB angles | | NPP MOD* | VIIRS L2G moderate bands M10, M11, M12, M13, M15, M16 | | NPP PTDN* | VIIRS DNB pointer files | | The standard VIIRS Cloud Mask (VCM) | VIIRS cloud mask | ^{*}IP products. Table 2 Black Marble VNP46A2 product input files | Input file | Description | |--------------|---| | VNP46A1 | VIIRS/NPP TOA Daily Gridded Day Night Band Linear Lat Lon Grid Night | | VNP43LGDNBA1 | VIIRS/NPP DNB BRDF/Albedo Model Parameters Daily L3 Global LLL Grid | | VNPLG09GA | VIIRS/NPP Surface Reflectance Daily L2G Global Linear Lat Lon Grid | | VNP04LGA | VIIRS/NPP Aerosols Optical Thickness Daily L2G Global Linear Lat Lon Grid | Table 3 Black Marble VNP46A3 product input files | Input file | Description | |------------|---| | VNP46A1 | VIIRS/NPP TOA Daily Gridded Day Night Band Linear Lat Lon Grid Night | | VNP46A2 | VIIRS/NPP Moonlight and Atmosphere corrected Daily Gridded Day Night Band Linear Lat Lon Grid Night | Table 4 Black Marble VNP46A4 product input files | Input file | Description | |------------|---| | VNP46A1 | VIIRS/NPP TOA Daily Gridded Day Night Band Linear Lat Lon Grid Night | | VNP46A2 | VIIRS/NPP Moonlight and
Atmosphere corrected Daily Gridded Day Night Band Linear Lat Lon Grid Night | Figure 3 Algorithm processing cycle and ancillary parameters used by NASA's Black Marble product suite. For the daytime branch, science product generation executables (PGEs) based on the standard suite of VIIRS land products are integrated as part of NASA's Black Marble processing chain. First, a modified version of the operational VIIRS surface reflectance algorithm (Roger et al., 2016; Vermote et al., 2014) is used to generate the DNB surface bidirectional reflectance factor (BRF) using NASA's Level 1B calibrated radiance product as input (i.e., 6-minute granules, or 2366 km along track and ~3100 km across-track). Level 2G DNB surface reflectance is then generated by performing spatial and temporal aggregation to 15 arc-second grid cells over daily time periods (Campagnolo et al., 2016; Pahlevan et al., 2017; Wolfe et al., 1998; Yang and Wolfe, 2001). Daily Level 3 DNB BRDF/Albedo data are then retrieved using the heritage MODIS/VIIRS algorithm (MCD43/VNP43) (Liu et al., 2017, Liu et al., 2017; Wang et al., 2018), and corresponding snow flags are estimated using the VIIRS Normalized Difference Snow Index (NDSI) algorithm (VNP10) (Riggs et al., 2016, Riggs et al., 2017). The NDVI and NDSI values are used to determine the growing, dormant, and snow periods to routinely update the *a priori* global database of the DNB BRDF product (Cescatti et al., 2012; Liu et al., 2017, Liu et al., 2017; Román et al., 2009). Surface BRF from the VIIRS I1 (red) and I2 (NIR) channels is used to obtain daily estimates of LAI (Knyazikhin et al., 1999; Park et al., 2017; Xiao et al., 2016). The retrieved LAI and clumping index values are then used to calculate the gap fraction probability (Pgap). Note that the vegetation correction is not applied in Black Marble Collection 1 product as requested by the end users. The nighttime branch describes the path followed to generate the final VNP46 products. We begin with the at-sensor TOA nighttime radiance (VNP46A1), along with the corresponding nighttime cloud mask, multiple solar/viewing/lunar geometry values (including moon-illuminated fraction and phase angles), and the daily snow and aerosol status flags. These science data sets (SDS) enable open access to the primary inputs used to generate NASA's Black Marble NTL time-series record, thus ensuring reproducibility of the final outputs. A series of temporal and spatial gap-filling techniques are also employed to improve the coverage of the VNP46 NTL product. #### 5 Scientific Data Sets (SDSs) from Black Marble Product Suite #### 5.1 The VNP46A1/VJ146A1 Daily At-sensor TOA Nighttime Lights Product The daily at-sensor TOA nighttime lights product is available at 15 arc-second spatial resolution from January 2012 onward. VNP46A1/VJ146A1 product contains 26 SDS layers (Table 3) including sensor radiance, zenith and azimuth angles at-sensor, solar, and lunar, cloud mask flag, time, shortwave IR radiance, brightness temperatures, VIIRS quality flags, moon phase angle, and moon illumination fraction. Contents of VNP46A1/VJ146A1 product are given in List 1. Table 3 presents detailed information on the layers. Table 4 and Table 5 present the details of the flag description keys and quality flags (QF) of the VNP46A1/VJ146A1 product. **List 1** Datasets in a sample of VNP46A1/VJ146A1 product. Table 3 Scientific datasets included in the VNP46A1/VJ146A1 daily at-sensor TOA nighttime radiance product. | Scientific Datasets | Units | Description | Bit Types | Fill | Valid | Scale | Offset | |----------------------|---------------------------------------|---------------|-----------|--------------------|-----------|--------|--------| | (SDS HDF Layers) | | | | Value | Range | Factor | | | DNB_At_Sensor_Radian | nW·cm ⁻² ·sr ⁻¹ | At-sensor DNB | 16-bit | 65535 ¹ | 0 - 65534 | 0.1 | 0.0 | 12 | ce | | radiance | unsigned | | | | | |----------------------------|--------------------|--------------------|-----------------|--------|-----------|---------|-------| | | | | integer | | | | | | Sensor_Zenith | Degrees | Sensor zenith | 16-bit signed | -32768 | -9000 - | 0.01 | 0.0 | | | | angle | integer | | 9000 | | | | Sensor_Azimuth | Degrees | Sensor azimuth | 16-bit signed | -32768 | -18000 - | 0.01 | 0.0 | | | | angle | integer | | 18000 | | | | Solar_Zenith | Degrees | Solar zenith angle | 16-bit signed | -32768 | 0 – 18000 | 0.01 | 0.0 | | | | | integer | | | | | | Solar_azimuth | Degrees | Solar azimuth | 16-bit signed | -32768 | -18000 - | 0.01 | 0.0 | | | | angle | integer | | 18000 | | | | Lunar_Zenith | Degrees | Lunar zenith | 16-bit signed | -32768 | 0 – 18000 | 0.01 | 0.0 | | | | angle | integer | | | | | | Lunar_Azimuth | Degrees | Lunar azimuth | 16-bit signed | -32768 | -18000 - | 0.01 | 0.0 | | | | angle | integer | | 18000 | | | | Glint_Angle | Degrees | Moon glint angle | 16-bit signed | -32768 | -18000 - | 0.01 | 0.0 | | | | | integer | | 18000 | | | | UTC_Time | Decimal | UTC time | 32-bit floating | -999.9 | 0 24 | 1.0 | 0.0 | | | hours | | point | | | | | | QF_Cloud_Mask ² | Unitless | Cloud mask | 16-bit | 65535 | 0 - 65534 | N/A | N/A | | | | status | unsigned | | | | | | | | | integer | | | | | | QF_DNB ³ | Unitless | DNB quality flag | 16-bit | 65535 | 0 - 65534 | N/A | N/A | | | | | unsigned | | | | | | | | | integer | | | | | | Radiance_M10 | W·m⁻²·μm- | Radiance in band | 16-bit | 65535 | 0 - 65534 | 0.0013 | -0.04 | | | 1·sr-1 | M10 | unsigned | | | | | | | | | integer | | | | | | Radiance_M11 | W·m⁻²·μm- | Radiance in band | 16-bit | 65535 | 0 - 65534 | 0.00058 | -0.02 | | | 1·sr ⁻¹ | M11 | unsigned | | | | | | | | | integer | | | | | | BrightnessTemperature_ | Kelvins | Brightness | 16-bit | 65535 | 0 - 65534 | 0.0025 | 203.0 | | M12 | | temperature of | unsigned | | | | | | | | band M12 | integer | | | | | | BrightnessTemperature_ | Kelvins | Brightness | 16-bit | 65535 | 0 - 65534 | 0.0025 | 203.0 | | M13 | | temperature of | unsigned | | | | | | | | band M13 | integer | | | | | | BrightnessTemperature_ | Kelvins | Brightness | 16-bit | 65535 | 0 - 65534 | 0.0041 | 111.0 | | M15 | | temperature of | unsigned | | | | | | | | band M15 | integer | | | | | | BrightnessTemperature_ | Kelvins | Brightness | 16-bit | 65535 | 0 - 65534 | 0.0043 | 103.0 | | M16 | | temperature of | unsigned | | | | | | | | band M16 | integer | | | | | |---------------------------|------------|------------------|----------------|--------|-----------|------|-----| | QF_VIIRS_M10 ⁴ | Unitless | Quality flag of | 16-bit | 65535 | 0 - 65534 | N/A | N/A | | | | band M10 | unsigned | | | | | | | | | integer | | | | | | QF_VIIRS_M11 ⁴ | Unitless | Quality flag of | 16-bit | 65535 | 0 - 65534 | N/A | N/A | | | | band M11 | unsigned | | | | | | | | | integer | | | | | | QF_VIIRS_M12 ⁴ | Unitless | Quality flag of | 16-bit | 65535 | 0 - 65534 | N/A | N/A | | | | band M12 | unsigned | | | | | | | | | integer | | | | | | QF_VIIRS_M13 ⁴ | Unitless | Quality flag of | 16-bit | 65535 | 0 - 65534 | N/A | N/A | | | | band M13 | unsigned | | | | | | | | | integer | | | | | | QF_VIIRS_M15 ⁴ | Unitless | Quality flag of | 16-bit | 65535 | 0 - 65534 | N/A | N/A | | | | band M15 | unsigned | | | | | | | | | integer | | | | | | QF_VIIRS_M16 ⁴ | Unitless | Quality flag of | 16-bit | 65535 | 0 - 65534 | N/A | N/A | | | | band M16 | unsigned | | | | | | | | | integer | | | | | | Moon_Phase_Angle | Degrees | Moon phase | 16-bit signed | -32768 | 0 – 18000 | 0.01 | 0.0 | | | | angle | integer | | | | | | Moon_Illumination_Fract | Percentage | Moon | 16-bit signed | -32768 | 0 – 10000 | 0.01 | 0.0 | | ion | | illumination | integer | | | | | | | | fraction | | | | | | | Granule | Unitless | Number of | 8-bit unsigned | 255 | 0 - 254 | 1.0 | 0.0 | | | | selected Granule | integer | | | | | | | | | | 1 | | | | $^{^{1}}$ Note that the need to use fill-values can arise from various scenarios such as bad quality data or if the solar zenith angle < 108 degrees since that is the nighttime cut-off used in the code. 2 Details of QF_Cloud_Mask are shown in Table 4. 3 The scale and offset are for nighttime. Users should check the quality flags and metadata for specific values. 4 Details of QF_DNB and QF for VIIRS band M10/11/12/13/15/16 are shown in Table 5. $\textbf{Table 4} \ Value \ of \ QF_Cloud_Mask \ in \ the \ VNP46A1/VJ146A1 \ product.$ | Bit | Flag description key | Interpretation | |-----|-----------------------|---------------------| | 0 | Day/Night | 0 = Night | | | | 1 = Day | | 1-3 | Land/Water Background | 000 = Land & Desert | | | | 001 = Land no Desert | |-----|--|-----------------------| | | | 010 = Inland Water | | | | 011 = Sea Water | | | | 101 = Coastal | | 4-5 | Cloud Mask Quality | 00 = Poor | | | | 01 = Low | | | | 10 = Medium | | | | 11 = High | | 6-7 | Cloud Detection Results & Confidence Indicator | 00 = Confident Clear | | | | 01 = Probably Clear | | | | 10 = Probably Cloudy | | | | 11 = Confident Cloudy | | 8 | Shadow Detected | 1 = Yes | | | | 0 = No | | 9 | Cirrus Detection (IR) (BTM15 – BTM16) | 1 = Cloud | | | | 0 = No Cloud | | 10 | Snow/ Ice Surface | 1 = Snow/Ice | | | | 0 = No Snow/Ice | Table 5 Value of QF_DNB and QF of VIIRS band M10/11/12/13/15/16 in the VNP46A1/VJ146A1 product. | SDS Layer | Flag Mask Values and Descriptions | |--------------|-----------------------------------| | QF_DNB | 1 = Substitute_Cal | | | 2 = Out_of_Range | | | 4 = Saturation | | | 8 = Temp_not_Nominal | | | 16 = Stray_light | | | 256 = Bowtie_Deleted/Range_bit | | | 512 = Missing_EV | | | 1024 = Cal_Fail | | | 2048 = Dead_Detector | | | | | QF_VIIRS_M10 | 1 = Substitute_Cal | | QF_VIIRS_M11 | 2 = Out_of_Range | | QF_VIIRS_M12 | 4 = Saturation | | QF_VIIRS_M13 | 8 = Temp_not_Nominal | | QF_VIIRS_M15 | 256 = Bowtie_Deleted | | QF_VIIRS_M16 | 512 = Missing_EV | | | 1024 = Cal_Fail | | | 2048 = Dead_Detector | # 5.2 The VNP46A2/VJ146A2 Daily
Moonlight-adjusted Nighttime Lights (NTL) Product The daily moonlight and atmosphere-corrected NTL is available at 15 arc-second resolution from January 2012-present. The VNP46A2/VJ146A2 product has 7 layers containing information on BRDF-corrected NTL, Gap-filled BRDF-corrected NTL, lunar irradiance, mandatory quality flag, latest high-quality retrieval (number of days), snow flag, and cloud mask flag. Contents of VNP46A2/VJ146A2 product are given in List 2. The detailed VNP46A2/VJ146A2 layer properties are described in Table 6. Table 7 and Table 8 present the details of quality flags (QF) for the VNP46A2/VJ146A2 product. HDFEOS ADDITIONAL GRIDS TO STATE THE STATE OF STAT List 2 Datasets in a sample of VNP46A2/VJ146A2 product Table 6 Scientific datasets included in VNP46A2/VJ146A2 daily moonlight-adjusted NTL product. | Scientific Data Sets | Units | Description | Bit Types | Fill | Valid | Scale | Offset | |-------------------------------------|---|-------------------|-----------|--------|--------|--------|--------| | (SDS HDF Layers) | | | | Value | Range | Factor | | | DNB_BRDF-Corrected_NTL | nWatts·cm ⁻² ·sr ⁻¹ | BRDF corrected | 16-bit | 65,535 | 0 – | 0.1 | 0.0 | | | | DNB NTL | unsigned | | 65,534 | | | | | | | integer | | | | | | Gap_Filled_DNB_BRDF- | nWatts·cm ⁻² ·sr ⁻¹ | Gap Filled BRDF | 16-bit | 65,535 | 0 – | 0.1 | 0.0 | | Corrected_NTL | | corrected DNB | unsigned | | 65,534 | | | | | | NTL | integer | | | | | | DNB_Lunar_Irradiance | nWatts·cm ⁻² | DNB Lunar | 16-bit | 65,535 | 0 – | 0.1 | 0.0 | | | | Irradiance | unsigned | | 65,534 | | | | | | | integer | | | | | | Mandatory_Quality_Flag ¹ | Unitless | Mandatory quality | 8-bit | 255 | 0 – 3 | N/A | N/A | | | | flag | unsigned | | | | | | | | | integer | | | | | | Latest_High_Quality_Retrieval | Number of days | Latest high quality | 8-bit | 255 | 0 - 254 | 1.0 | 0.0 | |-------------------------------|----------------|---------------------|----------|--------|---------|-----|-----| | | | BRDF corrected | unsigned | | | | | | | | DNB radiance | integer | | | | | | | | retrieval | | | | | | | Snow_Flag ² | Unitless | Flag for snow | 8-bit | 255 | 0 - 1 | N/A | N/A | | | | cover | unsigned | | | | | | | | | integer | | | | | | QF_Cloud_Mask ³ | Unitless | Quality flag for | 16-bit | 65,535 | 0 – | N/A | N/A | | | | cloud mask | unsigned | | 65,534 | | | | | | | integer | | | | | ¹ Details of Mandatory_Quality_Flag are shown in Table 7. ² Details of Snow_Flag are shown in Table 8. ³ Details of QF_Cloud_Mask are shown in Table 4. Table 7 Values of the Mandatory_Quality_Flag in VNP46A2/VJ146A2 product. | Value | Retrieval quality | Algorithm instance | |-------|-------------------|--| | 00 | High-quality | Main algorithm (Persistent nighttime lights) | | 01 | High-quality | Main algorithm (Ephemeral Nighttime Lights) | | 02 | Poor-quality | Main algorithm (Outlier, potential cloud | | | | contamination or other issues) | | 255 | No retrieval | Fill value | Table 8 Values of the Snow_Flag in VNP46A2/VJ146A2 product. | Flag description key | Value | Interpretation | |----------------------|-------|----------------| | Snow/ Ice Surface | 00 | No Snow/Ice | | | 01 | Snow/Ice | | | 255 | Fill value | # 5.3 The VNP46A3/VJ146A3 Monthly and VNP46A4/VJ146A4 Yearly Moonlight-adjusted Nighttime Lights (NTL) Product The monthly and yearly moonlight and atmosphere-corrected NTL composite are available at 15 arcsecond resolution from January 2012-present. The composite product has 28 layers containing information on NTL composite, the number of observations, quality, and standard deviation for multiview zenith angle categories (near-nadir, off-nadir, and all angles) and snow status (snow-covered and snow-free) as well as land water mask, platform, latitude, and longitude. Contents of VNP46A3/A4 (VJ146A3/A4) product are given in List 2. The detailed VNP46A3/A4 (VJ146A3/A4) layer properties are described in Table 6. Table 7 present the detailed description of quality flags (QF) for the VNP46A3/A4 (VJ146A3/A4) products. #### List 3 Datasets in a sample of VNP46A3/A4 (VJ146A3/A4) product Table 9 Scientific datasets included in VNP46A3/A4 (VJ146A3/A4) NTL composite products. | Scientific Data Sets | Units | Description | Bit | Fill | Valid | Scale | Off | |--------------------------|---|---------------------|----------|--------|--------|--------|-----| | (SDS HDF Layers) | | | Types | Value | Range | Factor | set | | AllAngle_Composite_Snow_ | nWatts·cm ⁻² ·sr ⁻¹ | Temporal Radiance | 16-bit | 65,535 | 0 – | 0.1 | 0.0 | | Covered | | Composite Using All | unsigned | | 65,534 | | | | | | Observations During | integer | | | | | | | | Snow-covered Period | | | | | | | AllAngle_Composite_Snow_ | Number of | Number of | 16-bit | 65,535 | 0 – | 1.0 | 0.0 | | Covered_Num | observations | Observations of | unsigned | | 65,534 | | | | Composite Using All Observations During Snow-covered Period AllAngle_Composite_Snow_ Covered Period | | | Temporal Radiance | integer | | | | | |---|------------------------------|---|-----------------------|----------|--------|--------|-----|-----| | AllAngle_Composite_Snow_ Unitless Quality Flag of Temporal Radiance Composite Using All Observations During Snow-covered Period Integer Integer Observations During Integer In | | | Composite Using All | | | | | | | AllAngle_Composite_Snow_ Covered_Quality¹ Unitless Unitless Unitless Using All Observations During Snow-covered Period | | | Observations During | | | | | | | Covered_Quality¹ Temporal Radiance Composite Using All Observations During Snow-covered Period AllAngle_Composite_Snow_ Covered_Std AllAngle_Composite_Snow_ Free AllAngle_Composite_Snow_ AllAngle_Composite_Snow_ Free_Num AllAngle_Composite_Snow_ AllAngle_Composite_Snow_ AllAngle_Composite_Snow_ Free_Quality¹ AllAngle_Composite_Snow_ AllAn | | | Snow-covered Period | | | | | | | Composite Using All Observations During Snow-covered Period AllAngle_Composite_Snow_ Covered_Std AllAngle_Composite_Snow_ Covered_Std AllAngle_Composite_Snow_ Snow-covered Period AllAngle_Composite_Snow_ Composite_Using All Observations During Snow-covered Period AllAngle_Composite_Snow_ Composite_Using All Observations During Snow-free Period AllAngle_Composite_Snow_ Composite_Using All Observations During Snow-free Period AllAngle_Composite_Snow_ Composite_Using All Observations Of Unitless Observations of Temporal Radiance Composite Using All Observations Of Unitless | AllAngle_Composite_Snow_ | Unitless | Quality Flag of | 8-bit | 255 | 0 – | 1.0 | 0.0 | | AllAngle_Composite_Snow_ Covered Period Snow-covered Period Snow-covered Period Snow-covered Period Snow-covered Period Std Snow-covered Period Std Standard Deviation of Temporal Radiance Composite Using All Observations During Snow-covered Period Snow-covered Period Snow-covered Period Snow-covered Period Snow-free Snow | Covered Quality ¹ | | | unsigned | | 254 | | | | AllAngle_Composite_Snow_ Covered Period AllAngle_Composite_Snow_ Covered Period AllAngle_Composite_Snow_ Covered_Std AllAngle_Composite_Snow_ Covered_Std AllAngle_Composite_Snow_ Covered_Std AllAngle_Composite_Snow_ Covered_Period Composite_Snow_ Covered_Period AllAngle_Composite_Snow_ Covered_Period AllAngle_Composite_Snow_ Covered_Period AllAngle_Composite_Snow_ Composite_Snow_ Covered_Period AllAngle_Composite_Snow_ AllAngle_Compo | | | Composite Using All | integer | | | | | | AllAngle_Composite_Snow_ Covered_Std | | | Observations During | | | | | | | Covered_Std Temporal Radiance Composite Using All Observations During Snow-covered Period AllAngle_Composite_Snow_ Free AllAngle_Composite_Snow_ AllAngle_Composite_Snow_ Free_Num AllAngle_Composite_Snow_ Free_Quality¹ AllAngle_Composite_Snow_ AllAngle_Composite_Snow | | | Snow-covered Period |
| | | | | | Composite Using All Observations During Snow-covered Period AllAngle_Composite_Snow_ Free Number of observations During Snow-free Period AllAngle_Composite_Snow_ Free_Num AllAngle_Composite_Snow_ Free_Quality¹ AllAngle_Composite_Snow_ AllAngle_Composite_Snow_ Free_Quality¹ AllAngle_Composite_Snow_ AllAngle_Composite_Snow_ Free_Period AllAngle_Composite_Snow_ AllAngle_Composite_Snow_ Free_Quality¹ AllAngle_Composite_Snow_ Free_Quality¹ AllAngle_Composite_Snow_ AllAngle_Composite_Snow_ Free_Period AllAngle_Composite_Snow_ AllAngle_Composite_Snow_ Free_Period AllAngle_Composite_Snow_ AllAngle_Composite_Snow_ Free_Period AllAngle_Composite_Snow_ AllAngle_ | AllAngle_Composite_Snow_ | nWatts·cm ⁻² ·sr ⁻¹ | Standard Deviation of | 16-bit | 65,535 | 0 – | 0.1 | 0.0 | | Observations During Snow-covered Period AllAngle_Composite_Snow_ | Covered_Std | | Temporal Radiance | unsigned | | 65,534 | | | | AllAngle_Composite_Snow_ Number of Observations During Snow-free Period AllAngle_Composite_Snow_ Observations During Snow-free Period AllAngle_Composite_Snow_ Observations During Snow-free Period AllAngle_Composite_Snow_ Observations Observations Observations Observations During Snow-free Period AllAngle_Composite_Snow_ Observations Observations During Snow-free Period AllAngle_Composite_Snow_ Observation of Temporal Radiance Unsigned Observation of Temporal Radiance Unsigned Observation Observation of Temporal Radiance Unsigned Observation | | | Composite Using All | integer | | | | | | AllAngle_Composite_Snow Free Num | | | Observations During | | | | | | | Free Composite Using All Observations During Snow-free Period AllAngle_Composite_Snow_ Observations Number of Observations of Unitieger Observations Observations Observations of Unitieger Observations of Unitieger Composite Using All Observations AllAngle_Composite_Snow_ Observations AllAngle_Composite_Snow_ Unitless AllAngle_Composite_Snow_ Observations Quality Flag of Temporal Radiance Unitieger Composite Using All Observations During Snow-free Period AllAngle_Composite_Snow_ Observations During Snow-free Period AllAngle_Composite_Snow_ Nwatts·cm^2·sr^1 Standard Deviation of Temporal Radiance Unisigned U | | | Snow-covered Period | | | | | | | AllAngle_Composite_Snow_ observations During Snow-free Period AllAngle_Composite_Snow_ observations Number of Observations of Unsigned Temporal Radiance Composite Using All Observations During Snow-free Period AllAngle_Composite_Snow_ Unitless AllAngle_Composite_Snow_ observations Quality Flag of Temporal Radiance Unsigned Composite Using All Observations During Snow-free Period AllAngle_Composite_Snow_ Observations During Snow-free Period AllAngle_Composite_Snow_ observations During Snow-free Period AllAngle_Composite_Snow_ nWatts·cm^2·sr^1 Standard Deviation of Temporal Radiance Unsigned R | AllAngle_Composite_Snow_ | nWatts·cm ⁻² ·sr ⁻¹ | Temporal Radiance | 16-bit | 65,535 | 0 – | 0.1 | 0.0 | | AllAngle_Composite_Snow_ Observations AllAngle_Composite_Snow_ observations AllAngle_Composite_Snow_ observations AllAngle_Composite_Snow_ observations AllAngle_Composite_Snow_ Unitless Free_Quality¹ AllAngle_Composite_Snow_ observations | Free | | Composite Using All | unsigned | | 65,534 | | | | AllAngle_Composite_Snow_ Number of observations Number of Observations of Temporal Radiance Composite Using All Observations During Snow-free Period Number of observations During Snow-free Period Number of Observations of unsigned integer Observations During Snow-free Period Number of Observations of unsigned integer Observations During Snow-free Period Observations During Observations During Snow-free Period Observations During Observations During Snow-free Period Observations During Snow-free Period Observation of Observation of Observation of | | | Observations During | integer | | | | | | Free_Num observations Observations of Temporal Radiance Composite Using All Observations During Snow-free Period AllAngle_Composite_Snow_ Free_Quality¹ AllAngle_Composite_Snow_ AllAngle_Composite_Snow_ Temporal Radiance Composite Using All Observations During Snow-free Period AllAngle_Composite_Snow_ Temporal Radiance Composite Using All Observations During Snow-free Period AllAngle_Composite_Snow_ Temporal Radiance | | | Snow-free Period | | | | | | | Temporal Radiance Composite Using All Observations During Snow-free Period AllAngle_Composite_Snow_ Free_Quality¹ AllAngle_Composite_Snow_ Observations During Snow-free Period AllAngle_Composite_Snow_ Temporal Radiance Composite Using All Observations During Snow-free Period AllAngle_Composite_Snow_ Temporal Radiance Observations During Snow-free Period AllAngle_Composite_Snow_ Temporal Radiance Integer Observations During Snow-free Period AllAngle_Composite_Snow_ Temporal Radiance Unsigned October 16-bit of 5,535 | AllAngle_Composite_Snow_ | Number of | Number of | 16-bit | 65,535 | 0 – | 1.0 | 0.0 | | Composite Using All Observations During Snow-free Period AllAngle_Composite_Snow_ Free_Quality¹ Composite Using All Observations During Snow-free Period Unitless Quality Flag of Temporal Radiance Composite Using All Observations During Snow-free Period AllAngle_Composite_Snow_ AllAngle_Composite_Snow_ Temporal Radiance NWatts·cm ⁻² ·sr ⁻¹ Standard Deviation of Temporal Radiance Unsigned Composite Using All Observations During Snow-free Period AllAngle_Composite_Snow_ Temporal Radiance Unsigned Composite Using All Unitless Observations During Snow-free Period AllAngle_Composite_Snow_ Temporal Radiance Unsigned Composite Using All Unitless Observations During Snow-free Period AllAngle_Composite_Snow_ Temporal Radiance Unsigned Composite Using All Unitless Observations During Snow-free Period Composite Using All Unitless Observations During Snow-free Period AllAngle_Composite_Snow_ | Free_Num | observations | Observations of | unsigned | | 65,534 | | | | Observations During Snow-free Period AllAngle_Composite_Snow_ Unitless Quality Flag of Temporal Radiance unsigned Composite Using All integer AllAngle_Composite_Snow_ NWatts·cm ⁻² ·sr ⁻¹ Standard Deviation of Temporal Radiance unsigned to 55,534 Temporal Radiance unsigned to 65,534 Temporal Radiance unsigned to 65,534 | | | Temporal Radiance | integer | | | | | | AllAngle_Composite_Snow_ Unitless Quality Flag of Temporal Radiance unsigned Composite_Snow_ Snow-free Period Unitless Quality Flag of Temporal Radiance unsigned integer Snow-free Period Snow-free Period Snow-free Period Temporal Radiance unsigned Unsigned Snow-free Period Snow-free Period Temporal Radiance unsigned Snow-free Std Temporal Radiance Unsigned Snow-free Period Unsigned Snow-free Std Unitless Snow-free Period Unsigned Unsigned Snow-free Period Unsigned Unsi | | | Composite Using All | | | | | | | AllAngle_Composite_Snow_ Unitless Quality Flag of Temporal Radiance unsigned Composite Using All Observations During Snow-free Period AllAngle_Composite_Snow_ nWatts·cm ⁻² ·sr ⁻¹ Standard Deviation of Temporal Radiance unsigned Unsigned Solution of Temporal Radiance unsigned Composite_Snow_ the property of prop | | | Observations During | | | | | | | Free_Quality¹ Temporal Radiance unsigned integer Observations During Snow-free Period AllAngle_Composite_Snow_ nWatts·cm ⁻² ·sr ⁻¹ Standard Deviation of Temporal Radiance unsigned unsigned Temporal Radiance unsigned 254 254 Composite Using All integer Snow-free Period AllAngle_Composite_Snow_ nWatts·cm ⁻² ·sr ⁻¹ Temporal Radiance unsigned 65,535 O 0.1 O.0 O.0 | | | Snow-free Period | | | | | | | Composite Using All integer Observations During Snow-free Period Snow-free Period Oscaria Using All AllAngle_Composite_Snow_ nWatts·cm ⁻² ·sr ⁻¹ Standard Deviation of Temporal Radiance unsigned Oscaria Oscaria Unsigned Oscaria Oscaria Oscaria Unsigned Oscaria O | AllAngle_Composite_Snow_ | Unitless | Quality Flag of | 8-bit | 255 | 0 – | 1.0 | 0.0 | | Observations During Snow-free Period AllAngle_Composite_Snow_ nWatts·cm ⁻² ·sr ⁻¹ Standard Deviation of 16-bit 65,535 0 - 0.1 0.0 Temporal Radiance unsigned 65,534 | Free_Quality ¹ | | Temporal Radiance | unsigned | | 254 | | | | Snow-free Period AllAngle_Composite_Snow_ nWatts·cm ⁻² ·sr ⁻¹ Standard Deviation of 16-bit 65,535 0 - 0.1 0.0 Temporal Radiance unsigned 65,534 | | | Composite Using All | integer | | | | | | AllAngle_Composite_Snow_ nWatts·cm ⁻² ·sr ⁻¹ Standard Deviation of 16-bit 65,535 0 - 0.1 0.0
Free_Std Temporal Radiance unsigned | | | Observations During | | | | | | | Free_Std Temporal Radiance unsigned 65,534 | | | Snow-free Period | | | | | | | | AllAngle_Composite_Snow_ | nWatts·cm ⁻² ·sr ⁻¹ | Standard Deviation of | 16-bit | 65,535 | 0 – | 0.1 | 0.0 | | Composite Using All integer | Free_Std | | Temporal Radiance | unsigned | | 65,534 | | | | | | | Composite Using All | integer | | | | | | Observations During | | | Observations During | | | | | | | Snow-free Period | | | Snow-free Period | | | | | | | NearNadir_Composite_Snow nWatts·cm ⁻² ·sr ⁻¹ Temporal Radiance 16-bit 65,535 0 - 0.1 0.0 | NearNadir_Composite_Snow | nWatts·cm ⁻² ·sr ⁻¹ | Temporal Radiance | 16-bit | 65,535 | 0 – | 0.1 | 0.0 | | _Covered Composite Using Near unsigned 65,534 | _Covered | | Composite Using Near | unsigned | | 65,534 | | | | Nadir Angle integer | | | Nadir Angle | integer | | | | | | Observations (View | | | Observations (View | | | | | | | Zenith Angle 0-20 | | | Zenith Angle 0-20 | | | | | | | degree) During Snow- | | | degree) During Snow- | | | | | | | covered Period | | | covered Period | | | | | | | NearNadir_Composite_Snow | Number of | Number of | 16-bit | 65,535 | 0 – | 1.0 | 0.0 | |--------------------------|---|-----------------------|----------|--------|--------|-----|-----| | _Covered_Num | observations | Observations of | unsigned | | 65,534 | | | | | | Temporal Radiance | integer | | | | | | | | Composite Using Near | | | | | | | | | Nadir Angle | | | | | | | | | Observations (View | | | | | | | | | Zenith Angle 0-20 | | | | | | | | |
degree) During Snow- | | | | | | | | | covered Period | | | | | | | NearNadir | Unitless | Quality Flag of | 8-bit | 255 | 0 – | 1.0 | 0.0 | | _Composite_Snow_Covered | | Temporal Radiance | unsigned | | 254 | | | | _Quality ¹ | | Composite Using Near | integer | | | | | | | | Nadir Angle | | | | | | | | | Observations (View | | | | | | | | | Zenith Angle 0-20 | | | | | | | | | degree) During Snow- | | | | | | | | | covered Period | | | | | | | NearNadir | nWatts·cm ⁻² ·sr ⁻¹ | Standard Deviation of | 16-bit | 65,535 | 0 – | 0.1 | 0.0 | | _Composite_Snow_Covered | | Temporal Radiance | unsigned | | 65,534 | | | | _Std | | Composite Using Near | integer | | | | | | | | Nadir Angle | | | | | | | | | Observations (View | | | | | | | | | Zenith Angle 0-20 | | | | | | | | | degree) During Snow- | | | | | | | | | covered Period | | | | | | | NearNadir | nWatts·cm ⁻² ·sr ⁻¹ | Temporal Radiance | 16-bit | 65,535 | 0 – | 0.1 | 0.0 | | _Composite_Snow_Free | | Composite Using Near | unsigned | | 65,534 | | | | | | Nadir Angle | integer | | | | | | | | Observations (View | | | | | | | | | Zenith Angle 0-20 | | | | | | | | | degree) During Snow- | | | | | | | | | free Period | | | | | | | NearNadir | Number of | Number of | 16-bit | 65,535 | 0 – | 1.0 | 0.0 | | _Composite_Snow_Free_Nu | observations | Observations of | unsigned | | 65,534 | | | | m | | Temporal Radiance | integer | | | | | | | | Composite Using Near | | | | | | | | | Nadir Angle | | | | | | | | | Observations (View | | | | | | | | | Zenith Angle 0-20 | | | | | | | | | degree) During Snow- | | | | | | | | | free Period | | | | | | | | l | <u>l</u> | 1 | l | l | l | | | NearNadir | Unitless | Quality Flag of | 8-bit | 255 | 0 – | 1.0 | 0.0 | |--------------------------|---|-----------------------|----------|---|--------|-----|-----| | _Composite_Snow_Free_Qu | | Temporal Radiance | unsigned | | 254 | | | | ality ¹ | | Composite Using Near | integer | | | | | | | | Nadir Angle | | | | | | | | | Observations (View | | | | | | | | | Zenith Angle 0-20 | | | | | | | | | degree) During Snow- | | | | | | | | | free Period | | | | | | | NearNadir | nWatts·cm ⁻² ·sr ⁻¹ | Standard Deviation of | 16-bit | 65,535 | 0 – | 0.1 | 0.0 | | _Composite_Snow_Free_Std | | Temporal Radiance | unsigned | | 65,534 | | | | | | Composite Using Near | integer | | | | | | | | Nadir Angle | 8 | | | | | | | | Observations (View | | | | | | | | | Zenith Angle 0-20 | | | | | | | | | degree) During Snow- | | | | | | | | | free Period | | | | | | | OffNadir Composite Snow | nWatts·cm ⁻² ·sr ⁻¹ | Temporal Radiance | 16-bit | 65,535 | 0 – | 0.1 | 0.0 | | Covered | in water our si | Composite Using Off | unsigned | 03,333 | 65,534 | 0.1 | 0.0 | | Covered | | Nadir Angle | integer | | 03,331 | | | | | | Observations (View | mieger | | | | | | | | Zenith Angle 40-60 | | | | | | | | | degree) During Snow- | | | | | | | | | covered Period | | | | | | | OffNadir | Number of | Number of | 16-bit | 65,535 | 0 – | 1.0 | 0.0 | | _Composite_Snow_Covered | observations | Observations of | unsigned | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 65,534 | | | | Num | | Temporal Radiance | integer | | , | | | | _ | | Composite Using Off | | | | | | | | | Nadir Angle | | | | | | | | | Observations (View | | | | | | | | | Zenith Angle 40-60 | | | | | | | | | degree) During Snow- | | | | | | | | | covered Period | | | | | | | OffNadir | Unitless | Quality Flag of | 8-bit | 255 | 0 – | 1.0 | 0.0 | | _Composite_Snow_Covered | | Temporal Radiance | unsigned | | 254 | | | | _Quality ¹ | | Composite Using Off | integer | | | | | | | | Nadir Angle | | | | | | | | | Observations (View | | | | | | | | | Zenith Angle 40-60 | | | | | | | | | degree) During Snow- | | | | | | | | | covered Period | | | | | | | OffNadir | nWatts·cm ⁻² ·sr ⁻¹ | Standard Deviation of | 16-bit | 65,535 | 0 – | 0.1 | 0.0 | | | 5 | | | , | _ | | | | Composite Snow Covered | | Temporal Radiance | unsigned | | 65,534 | | | |---------------------------|---|-----------------------|----------|--------|--------|-----|-----| | _Std | | Composite Using Off | integer | | | | | | | | Nadir Angle | | | | | | | | | Observations (View | | | | | | | | | Zenith Angle 40-60 | | | | | | | | | degree) During Snow- | | | | | | | | | covered Period | | | | | | | OffNadir | nWatts·cm ⁻² ·sr ⁻¹ | Temporal Radiance | 16-bit | 65,535 | 0 – | 0.1 | 0.0 | | Composite Snow Free | nwaus cm - sr | Composite Using Off | unsigned | 05,555 | | 0.1 | 0.0 | | _Composite_snow_Free | | | | | 65,534 | | | | | | Nadir Angle | integer | | | | | | | | Observations (View | | | | | | | | | Zenith Angle 40-60 | | | | | | | | | degree) During Snow- | | | | | | | | | free Period | | | | | | | OffNadir | Number of | Number of | 16-bit | 65,535 | 0 – | 1.0 | 0.0 | | _Composite_Snow_Free_Nu | observations | Observations of | unsigned | | 65,534 | | | | m | | Temporal Radiance | integer | | | | | | | | Composite Using Off | | | | | | | | | Nadir Angle | | | | | | | | | Observations (View | | | | | | | | | Zenith Angle 40-60 | | | | | | | | | degree) During Snow- | | | | | | | | | free Period | | | | | | | OffNadir | Unitless | Quality Flag of | 8-bit | 255 | 0 – | 1.0 | 0.0 | | _Composite_Snow_Free_Qu | | Temporal Radiance | unsigned | | 254 | | | | ality ¹ | | Composite Using Off | integer | | | | | | | | Nadir Angle | | | | | | | | | Observations (View | | | | | | | | | Zenith Angle 40-60 | | | | | | | | | degree) During Snow- | | | | | | | | | free Period | | | | | | | OffNadir | nWatts·cm ⁻² ·sr ⁻¹ | Standard Deviation of | 16-bit | 65,535 | 0 – | 0.1 | 0.0 | | _Composite_Snow_Free_Std | | Temporal Radiance | unsigned | 00,000 | 65,534 | ··· | | | simposite_sitow_free_situ | | Composite Using Off | integer | | 00,001 | | | | | | Nadir Angle | integer | | | | | | | | Observations (View | | | | | | | | | Zenith Angle 40-60 | | | | | | | | | degree) During Snow- | | | | | | | | | free Period | | | | | | | DND DL (C. 2 | TT '41 | | 0.1% | 255 | 0 | 1.0 | 0.0 | | DNB_Platform ² | Unitless | Platform | 8-bit | 255 | 0 – | 1.0 | 0.0 | | | | | unsigned | | 254 | | | | | | | integer | | | | | |------------------------------|---------------|-----------------|-----------|-----|-----|-----|-----| | Land_Water_Mask ³ | Unitless | Land Water Mask | 8-bit | 255 | 0 – | 1.0 | 0.0 | | | | | unsigned | | 254 | | | | | | | integer | | | | | | Lat | Degrees_north | Latitude | 64-bit | N/A | N/A | N/A | N/ | | | | | floating- | | | | A | | | | | point | | | | | | Lon | Degree_east | Longitude | 64-bit | N/A | N/A | N/A | N/ | | | | | floating- | | | | A | | | | | point | | | | | ¹ Details of Quality_Flag are shown in Table 10. ² Details of DNB_Platform are shown in Table 11. ³ Details of Land_Water_Mask are shown in Table 4. Table 10 Values of the Quality Flag in VNP46A3/A4 (VJ146A3/A4) product. | Value | Retrieval quality | Algorithm instance | | |-------|-------------------|---|--| | 00 | Good-quality | The number of observations used for the | | | | | composite is larger than 3 | | | 01 | Poor-quality | The number of observations used for the | | | | | composite is less than or equal to 3 | | | 02 | Gap filled | Gap filled NTL based on historical data | | | 255 | Fill value | Fill value | | Table 11 Values of the DNB Platform in VNP46A3/A4 (VJ146A3/A4) product. | Value | Sensors | |-------|---------------------| | 00 | Suomi-NPP | | 01 | NOAA-20 | | 02 | Suomi-NPP and NOAA- | | | 20 combined | | 255 | Fill value | ## **5.4 Examples of the Black Marble Product Suite** The Black Marble product suite is available both retrospectively, via NASA's Level 1 and Atmosphere Archive and Distribution System Distributed Active Archive Center (LAADS-DAAC), and in forward near-real-time (NRT) data streams, via NASA's Land, Atmosphere Near-Real-time Capability for EOS (LANCE) with a latency of about three hours. The NRT data are mainly used in response to disasters and other management applications, which require low latency data access. **Figure 4** Black Marble product suite components for a $10^{\circ} \times 10^{\circ}$ Level 3 tile over France and the Balearic Sea region (h18v04; DOY 2015-091). The full-moon-illuminated and 51% cloud-contaminated scene illustrates the challenges of nighttime cloud masking over snow-covered surfaces (e.g., the French Alps and the Pyrenees). Figure 4 and Figure 5 illustrate the key processing steps used to retrieve high-quality NTL as part of NASA's Black Marble product suite. Cloud-free, atmospheric-, seasonal-, and moonlight BRDF-corrected DNB nighttime radiance is produced using the nighttime DNB-at-sensor radiance (VNP46A1), nighttime cloud mask, aerosol optical depth values, snow status flag, Ross-Li DNB BRDF model parameters and albedo values, Pgap, and per-pixel estimates of DNB lunar irradiance and corresponding geometries. A mandatory quality assurance (QA) flag is then provided to establish the pixel-specific estimates of retrieval performance. Note that when the temporal gap-filling routine is called upon, as reported in the mandatory quality assurance (QA) Flags (Table 7), the latest high-quality date observed (based on retrievals using the main algorithm) is reported as a separate SDS layer. If an outlier is still detected after temporal gap-filling, then the VNP46 algorithm defaults to a monthly climatology, based on the most recently available moonless high QA values. Thus, through judicious use of the VNP46 product quality flag, the end-user can establish whether a particular temporally gap-filled NTL value is based on a recent date or not. This results in a traceable, moonlight-adjusted, NTL product to assess current versus recent NTL conditions, while reducing persistent data gaps caused by nighttime clouds, snow, and other ephemeral artifacts (e.g., the Aurora Borealis - cf., Figure 5). Figure 6 illustrates the
monthly (VNP46A3) and yearly (VNP46A4) NTL composite, the associated the number of valid observations used for the composite, and quality flags generated from daily lunar-BRDF-corrected NTL product (VNP46A2) for tile h06v05 in 2016. **Figure 5** VNP46 product suite components for a 10° × 10° Level 3 tile over Sweden and Finland (h20v02; DOY 2013-080). The half-moon-illuminated and 30% cloud-contaminated scene is shown to capture extraneous light emissions north of the Gulf of Bothnia caused by the Aurora Borealis. **Figure 6** VNP46A3 monthly (upper) and VNP46A4 yearly (bottom) NTL composite (left), the associated number of observations for the composite (middle) and quality (right) for a 10° × 10° Level 3 tile h06v05 in 2016. #### 6 Evaluation and Validation of the Product The overarching goal of NASA's Black Marble science product development effort is to achieve a "breakthrough" performance specification (cf., Table 9) by conducting the following: (1) long-term stability monitoring of the entire VNP46 algorithm processing chain, including the fundamental (Level 1B) VIIRS DNB time series record, terrain-corrected geolocation, stray light correction, and calibration LUTs; and (2) global quality assessment, uncertainty quantification, and product validation. To assess progress, we have developed a series of benchmark tests to quantify product performance at representative spatial and temporal scales. This comprehensive suite of benchmark tests and assessment metrics are meant to ensure that variations in VNP46 product performance can be identified quickly so that improvements can be implemented in a timely fashion. It also enables the end-user to consider the products in their appropriate context, e.g., by anticipating appropriate noise reduction levels under specific retrieval conditions. **Table 9** Key performance metrics established for NASA's Black Marble product suite. | Key performance metrics Threshold Breakthrough Goal | Threshold | Breakthrough | Goal | | |---|--|---|---|--| | NTL detection limit (Lmin) | 3.0 nW·cm ⁻² ·sr ⁻¹ | 0.5 nW· cm ⁻² ·sr ⁻¹ | 0.25 nW· cm ⁻² ·sr ⁻¹ | | | NTL robustness (L0) | ±3.0 nW·cm ⁻² ·sr ⁻¹ | $\pm 0.10 \text{ nW} \cdot \text{cm}^{-2} \cdot \text{sr}^{-1}$ | $\pm 0.05 \text{ nW} \cdot \text{cm}^{-2} \cdot \text{sr}^{-1}$ | | | Stray light error | 0.45 nW·cm ^{-2·} sr ⁻¹ | 0.25 nW·cm ^{-2·} sr ⁻¹ | $< 0.1 \text{ nW} \cdot \text{cm}^{-2} \cdot \text{sr}^{-1}$ | | | Spatial resolution | 742m (±5%) | 500m (±5%) | ≤200m (±5%) | | | Temporal resolution | Monthly | Daily | Hourly | | | Geolocation uncertainty | 133m | 50m | 20m | | A series of benchmark tests were designed to quantify errors inherited from the upstream products (i.e., VIIRS calibrated radiance, cloud mask, aerosol retrieval, etc.), provided a relative assessment of NTL product performance. The initial validation results are presented together with example case studies that are available in related publications in section 10. To establish the absolute accuracy of the final NTL retrievals, one must also assess the NTL products against an independent source of reference data. Unfortunately, quality-assessed *in situ* NTL measurements are not widely available; let alone, at the spatial and temporal densities necessary to capture the full range of retrieval conditions. Recent NASA Black Marble product validation efforts have therefore focused on developing guidelines for accuracy assessment of NTL products through a number of international initiatives. Figure 7 shows an example of the accuracy assessment of NTL products through a field experiment at the Pitahaya farmland site in Cabo Rojo, PR. During the night of 2 March 2017, at 02:00 local time, the Puerto Rico's Working Group on Light Pollution (PRWGLP) team conducted a validation experiment at the Pitahaya site. A stable point source was reflected by a 30 m² Lambertian target to generate an in-band DNB radiance at sensor of ~0.45nW·cm⁻²·sr⁻¹. Additional Sky-Quality Meter instrument data recordings (Falchi et al., 2016; Kyba et al., 2011, Kyba et al., 2013; Schnitt et al., 2013) with specialized filters matching the VIIRS relative spectral response, as well as atmospheric measurements from nearby Aerosol Robotic Network (AERONET) sun photometers (Holben et al., 1998) were used to characterize atmospheric conditions. **Figure 7** The NTL radiance at the Pitahaya farmland site in Cabo Rojo, PR on 1st, 2nd and 3rd March 2017. The top-right image shows the setup of the stable point source. TOA and VNP46A2 values are in nW·cm⁻²·sr⁻¹. VCM = 0 represents cloud free overpasses. LZA is lunar zenith angle, and the values larger than 108° correspond to moonless nights. The validation approach follows the assessment method first described in *Cao and Bai* (2014), which relies on quantitative analysis and stability monitoring of stable light point sources. We used the following parameters to generate our radiative transfer calculations: (1) atmospheric transmittance = 0.8 (based on 6S radiative transfer code and AERONET calculations), a target reflectance = 0.8, and 16 W of total effective irradiance incident on the reflective surface. Results in Figure 7 also illustrate how the detected VIIRS at-sensor cloud-corrected radiance (or TOA) and VNP46A2 estimates over the pixel centered on the reflective point source were within the VNP46A2 product's "breakthrough" requirement specifications for the NTL detection limit, Lmin (0.43 nW·cm⁻²·sr⁻¹) after removing background noise measured the days prior and after activation of the stable light point sources. We found that the final VNP46A2 product resulted in a 16.95% sensitivity enhancement (due to reduced background noise), as confirmed in previous benchmark tests, compared to the at-sensor cloud-corrected radiance product (TOA) under observed moon-free conditions. #### 7 Data Archives The VNP46 suite of operational products are archived and supported by NASA's LAADS DAAC data center https://ladsweb.modaps.eosdis.nasa.gov/. The VNP46 suite of near-real-time products with a latency of about three hours are available at the NASA LANCE: NASA Near-Real-time Data and Imagery https://earthdata.nasa.gov/earth-observation-data/near-real-time. ## 8 Data Usage and Citation Policies Please find detailed information about how to use and how to cite the data on the webpage https://modaps.modaps.eosdis.nasa.gov/services/faq/LAADS Data-Use Citation Policies.pdf. #### **9 Contact Information** Principal Investigator: Dr. Miguel O. Román (mroman@usra.edu) Science Principal Investigator: Dr. Zhuosen Wang (zhuosen.wang@nasa.gov) NASA Official: Dr. Virginia L. Kalb (virginia.l.kalb@nasa.gov) #### 10 Related Publications Román, M.O., Wang, Z., Sun, Q., Kalb, V., Miller, S.D., Molthan, A., Schultz, L., Bell, J., Stokes, E.C., Pandey, B. and Seto, K.C., et al. (2018). NASA's Black Marble nighttime lights product suite. Remote Sens. Environ. 210, 113-143. doi:10.1016/j.rse.2018.03.017. Román, M.O. and Stokes, E.C. (2015). Holidays in lights: Tracking cultural patterns in demand for energy services. Earth's Future, 3, 182–205. Román, M.O., Stokes, E.C., Shrestha, R., Wang, Z., Schultz, L., Sepúlveda Carlo, E.A., Sun, Q., Bell, J., Molthan, A., Kalb, V., Ji, C., Seto, K.C., McClain, S.N., Enenkel, M., 2019. Satellite-based assessment of electricity restoration efforts in Puerto Rico after Hurricane Maria. PLoS One. doi:10.1371/journal.pone.0218883 Wang, Z., Román, M.O., Kalb, V.L., Miller, S.D., Zhang, J., Shrestha, R.M., 2021. Quantifying uncertainties in nighttime light retrievals from Suomi-NPP and NOAA-20 VIIRS Day/Night Band data. Remote Sensing of Environment 263, 112557. https://doi.org/10.1016/J.RSE.2021.112557 Wang, Z., Shrestha, R.M., Roman, M.O., Kalb, V.L., 2022. NASA's Black Marble Multiangle Nighttime Lights Temporal Composites. IEEE Geoscience and Remote Sensing Letters 19. https://doi.org/10.1109/LGRS.2022.3176616 Wang, Z., Román, M. O., Sun, Q., Molthan, A. L., Schultz, L. A., and Kalb, V. L. (2018). Monitoring Disaster-related Power Outages Using NASA Black Marble Nighttime Light Product. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3, 1853-1856, https://doi.org/10.5194/isprs-archives-XLII-3-1853-2018, 2018. Wang, Z., Shrestha, R. and Román, M. O., (2020). NASA's Black Marble Nighttime Lights Product Suite Algorithm Theoretical Basis Document (ATBD), Version 1.1, July 2020. Available in https://viirsland.gsfc.nasa.gov/PDF/VIIRS BlackMarble ATBD V1.1.pdf Cole, T.A., Wanik, D.W., Molthan, A.L., Román, M.O. and Griffin, R.E. (2017). Synergistic use of nighttime satellite data, electric utility infrastructure, and ambient population to improve power outage detections in urban areas. Remote Sensing, 9(3), 286. doi:10.3390/rs9030286. #### References - Andersson, E., Barthel, S., Borgström, S., Colding, J., Elmqvist, T., Folke, C., Gren, Å., 2014. Reconnecting cities to the biosphere: stewardship of green infrastructure and urban ecosystem services. Ambio 43, 445–453. - Asanuma, I., Yamaguchi, T., Park, J., Mackin, K.J., Mittleman, J., 2016. Detection limit of fishing boats by the day night band (DNB) on VIIRS, in: SPIE Optical Engineering+ Applications. International Society for Optics and Photonics, p. 99760P–99760P–8. - Bankert, R.L., Solbrig, J.E., Lee, T.F., Miller, S.D., 2011. Automated lightning flash detection in nighttime visible satellite data. Weather Forecast. 26, 399–408. - Baret, F., NightingaleJ., Garrigues, S., Justice, C., Nickeson, J.E., 2009. Report on the CEOS Land Product Validation Sub-group Meeting. Earth Obs.
21, 26–30. - Bennett, M.M., Smith, L.C., 2017. Advances in using multitemporal night-time lights satellite imagery to detect, estimate, and monitor socioeconomic dynamics. Remote Sens. Environ. 192, 176–197. doi:10.1016/j.rse.2017.01.005 - Bennie, J., Davies, T.W., Inger, R., Gaston, K.J., 2014. Mapping artificial lightscapes for ecological studies. Methods Ecol. Evol. 5, 534–540. doi:10.1111/2041-210X.12182 - Bickenbach, F., Bode, E., Nunnenkamp, P., Söder, M., 2016. Night lights and regional GDP. Rev. World Econ. 152, 425–447. doi:10.1007/s10290-016-0246-0 - Campagnolo, M.L., Sun, Q., Liu, Y., Schaaf, C., Wang, Z., Román, M.O., 2016. Estimating the effective spatial resolution of the operational BRDF, albedo, and nadir reflectance products from MODIS and VIIRS. Remote Sens. Environ. 175, 52–64. - Cao, C., Bai, Y., 2014. Quantitative Analysis of VIIRS DNB Nightlight Point Source for Light Power Estimation and Stability Monitoring. Remote Sens. 6, 11915–11935. doi:10.3390/rs61211915 - Cao, C., Shao, X., Uprety, S., 2013. Detecting light outages after severe storms using the S-NPP/VIIRS day/night band radiances. IEEE Geosci. Remote Sens. Lett. 10, 1582–1586. doi:10.1109/LGRS.2013.2262258 - Cescatti, A., Marcolla, B., Vannan, S.K.S., Pan, J.Y., Román, M.O., Yang, X., Ciais, P., Cook, R.B., Law, B.E., Matteucci, G., Migliavacca, M., Moors, E., Richardson, A.D., Seufert, G.G., Schaaf, C.B., 2012. Intercomparison of MODIS albedo retrievals and in situ measurements across the global FLUXNET network. Remote Sens. Environ. 121, 323–334. doi:10.1016/j.rse.2012.02.019 - Chen, H., Xiong, X., Sun, C., Chen, X., Chiang, K., 2017. Suomi-NPP VIIRS day-night band on-orbit calibration and performance. J. Appl. Remote Sens. 11, 36019. - Chen, J.M., Black, T.A., 1991. Measuring leaf area index of plant canopies with branch architecture. Agric. For. Meteorol. 57, 1–12. - Chen, J.M., Menges, C.H., Leblanc, S.G., 2005. Global mapping of foliage clumping index using multi-angular satellite data. Remote Sens. Environ. 97, 447–457. - Chen, X., Nordhaus, W., 2015. A test of the new VIIRS lights data set: Population and economic output in Africa. Remote Sens. 7, 4937–4947. doi:10.3390/rs70404937 - Chen, Z., Yu, B., Hu, Y., Huang, C., Shi, K., Wu, J., 2015. Estimating house vacancy rate in metropolitan areas using NPP-VIIRS nighttime light composite data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 8, 2188–2197. doi:10.1109/JSTARS.2015.2418201 - Chopping, M.J., 2006. Progress in retrieving canopy structure parameters from NASA multi-angle remote sensing, in: International, I. (Ed.), Proceedings of the IEEE International Geoscience & Remote Sensing Symposium, IGARSS '06 and the 27th Canadian Remote Sensing Symposium. Denver, CO, pp. 256–259. - Cinzano, P., Falchi, F., Elvidge, C.D., Baugh, K.E., 2000. The artificial night sky brightness mapped from DMSP satellite Operational Linescan System measurements. Mon. Not. R. Astron. Soc. 318, 641–657. - Cole, T.A., Wanik, D.W., Molthan, A.L., Román, M.O., Griffin, R.E., 2017. Synergistic Use of Nighttime Satellite Data, Electric Utility Infrastructure, and Ambient Population to Improve Power Outage Detections in Urban Areas. Remote Sens. 9, 286. doi:10.3390/rs9030286 - Cook, B.D., Corp, L.A., Nelson, R.F., Middleton, E.M., Morton, D.C., McCorkel, J.T., Masek, J.G., Ranson, K.J., Ly, V., Montesano, P.M., 2013. NASA goddard's LiDAR, hyperspectral and thermal (G-LiHT) airborne imager. Remote Sens. 5, 4045–4066. doi:10.3390/rs5084045 - Coscieme, L., Pulselli, F.M., Bastianoni, S., Elvidge, C.D., Anderson, S., Sutton, P.C., 2014. A thermodynamic geography: Night-time satellite imagery as a proxy measure of emergy. Ambio 43, 969–979. doi:10.1007/s13280-013-0468-5 - Elvidge, C.D., Keith, D.M., Tuttle, B.T., Baugh, K.E., 2010. Spectral identification of lighting type and character. Sensors 10, 3961–3988. - Elvidge, C.D., Zhizhin, M., Baugh, K., Hsu, F.-C., 2015a. Automatic boat identification system for VIIRS low light imaging data. Remote Sens. 7, 3020–3036. - Elvidge, C.D., Zhizhin, M., Baugh, K., Hsu, F.-C., Ghosh, T., 2015b. Methods for global survey of natural gas flaring from visible infrared imaging radiometer suite data. Energies 9, 14. - Esch, T., Heldens, W., Hirne, A., Keil, M., Marconcini, M., Roth, A., Zeidler, J., Dech, S., Strano, E., 2017. Breaking new ground in mapping human settlements from space-The Global Urban Footprint. arXiv Prepr. arXiv1706.04862. - Esch, T., Marconcini, M., Felbier, A., Roth, A., Heldens, W., Huber, M., Schwinger, M., Taubenbock, H., Muller, A., Dech, S., 2013. Urban footprint processor-Fully automated processing chain generating settlement masks from global data of the TanDEM-X mission. IEEE Geosci. Remote Sens. Lett. 10, 1617–1621. doi:10.1109/LGRS.2013.2272953 - Falchi, F., Cinzano, P., Duriscoe, D., Kyba, C.C.M., Elvidge, C.D., Baugh, K., Portnov, B.A., Rybnikova, N.A., Furgoni, R., 2016. The new world atlas of artificial night sky brightness. Sci. Adv. 2, e1600377. - Griggs, D., Stafford-smith, M., Gaffney, O., Rockström, J., Öhman, M.C., Steffen, W., Glaser, G., Kanie, N., Noble, I., 2015. Policy: Sustainable development goals for people and planet. Nature 495, 5–9. doi:10.1038/495305a - Guo, W., Lu, D., Wu, Y., Zhang, J., 2015. Mapping impervious surface distribution with integration of SNNP VIIRS-DNB and MODIS NDVI data. Remote Sens. 7, 12459–12477. - He, L., Chen, J.M., Pisek, J., Schaaf, C.B., Strahler, A.H., 2012. Global clumping index map derived from the MODIS BRDF product. Remote Sens. Environ. 119, 118–130. - Helios Global, 2017. Helios Global World Trends [WWW Document]. URL http://www.heliosglobalinc.com/world-trends-watch/ (accessed 10.24.17). - Heynen, N., Perkins, H.A., Roy, P., 2006. The political ecology of uneven urban green space: the impact of political economy on race and ethnicity in producing environmental inequality in Milwaukee. Urban Aff. Rev. 42, 3–25. - Hill, M.J., Román, M.O., Schaaf, C.B., 2011. Dynamics of vegetation indices in tropical and subtropical savannas defined by ecoregions and Moderate Resolution Imaging Spectroradiometer (MODIS) land cover. Geocarto Int. 1–39. doi:doi:10.1080/10106049.2011.626529 - Hillger, D., Kopp, T., Lee, T., Lindsey, D., Seaman, C., Miller, S., Solbrig, J., Kidder, S., Bachmeier, S., Jasmin, T., 2013. First-light imagery from Suomi NPP VIIRS. Bull. Am. Meteorol. Soc. 94, 1019–1029. - Holben, B.N., Eck, T.F., Slutsker, I., Tanré, D., Buis, J.P., Setzer, A., Vermote, E., Reagan, J.A., Kaufman, Y.J., Nakajima, T., Lavenu, F., Jankowiak, I., Smirnov, A., 1998. AERONET–A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ. 66, 1–16. doi:doi:10.1016/S0034-4257(98)00031-5 - Hu, C., Chen, S., Wang, M., Murch, B., Taylor, J., 2015. Detecting surface oil slicks using VIIRS nighttime imagery under moon glint: a case study in the Gulf of Mexico. Remote Sens. Lett. 6, 295–301. - Huang, Q., Yang, X., Gao, B., Yang, Y., Zhao, Y., 2014. Application of DMSP/OLS nighttime light images: A meta-analysis and a systematic literature review. Remote Sens. 6, 6844–6866. doi:10.3390/rs6086844 - Jim, C.Y., 2004. Green-space preservation and allocation for sustainable greening of compact cities. Cities 21, 311–320. - Johnson, R.S., Zhang, J., Hyer, E.J., Miller, S.D., Reid, J.S., 2013. Preliminary investigations toward nighttime aerosol optical depth retrievals from the VIIRS day/night band. Atmos. Meas. Tech. 6, 587–612. - Kabisch, N., Haase, D., 2014. Green justice or just green? Provision of urban green spaces in Berlin, Germany. Landsc. Urban Plan. 122, 129–139. - Katz, Y., Levin, N., 2016. Quantifying urban light pollution A comparison between field measurements and EROS-B imagery. Remote Sens. Environ. 177, 65–77. doi:10.1016/j.rse.2016.02.017 - Klein, A.G., Stroeve, J., 2002. Development and validation of a snow albedo algorithm for the MODIS instrument. Ann. Glaciol. 34, 45–52. - Knyazikhin, Y., Glassy, J., Privette, J.L., Tian, Y., Lotsch, A., Zhang, Y., Wang, Y., Morisette, J.T., P.Votava, Myneni, R.B., Nemani, R.R., Running, S.W., 1999. MODIS Leaf Area Index (LAI) and Fraction of Photosynthetically Active Radiation Absorbed by Vegetation (FPAR) Product (MOD15) Algorithm Theoretical Basis Document, http://eospso.gsfc.nasa.gov/atbd/modistables.html. - Kopp, T.J., Thomas, W., Heidinger, A.K., Botambekov, D., Frey, R.A., Hutchison, K.D., Iisager, B.D., Brueske, K., Reed, B., 2014. The VIIRS Cloud Mask: Progress in the first year of S NPP toward a common cloud detection scheme. J. Geophys. Res. Atmos. 119, 2441–2456. - Kreyszig, E. (1979). Advanced Engineering Mathematics (Fourth ed.). Wiley. p. 880, eq. 5. ISBN 0-471-02140-7. - Kyba, C.C.M., Ruhtz, T., Fischer, J., Hölker, F., 2011. Cloud coverage acts as an amplifier for ecological light pollution in urban ecosystems. PLoS One 6, e17307. - Kyba, C.C.M., Wagner, J.M., Kuechly, H.U., Walker, C.E., Elvidge, C.D., Falchi, F., Ruhtz, T., Fischer, J., Hölker, F., 2013. Citizen Science Provides Valuable Data for Monitoring Global Night Sky Luminance. Sci. Rep. 3, 1835. doi:10.1038/srep01835 - Lacaze, R., Chen, J.M., Roujean, J.-L., Leblanc, S.G., 2002. Retrieval of vegetation clumping index using hot spot signatures measured by POLDER instrument. Remote Sens. Environ. 79, 84–95. doi:doi:10.1016/S0034-4257(01)00241-3 - Leblanc, S.G., Chen, J.M., White, H.P., Latifovic, R., Lacaze, R., Roujean, J.-L., 2005. Canada-wide foliage clumping index mapping from multiangular POLDER measurements. Can. J. Remote Sens. 31, 364–376. - Lee, S., Chiang, K., Xiong, X., Sun, C., Anderson, S., 2014. The S-NPP VIIRS Day-Night Band on-orbit calibration/characterization and current state of SDR products. Remote Sens. 6, 12427–12446. - Lee, S., McIntire, J., Oudrari, H., Schwarting, T., Xiong, X., 2015. A New Method for Suomi-NPP VIIRS Day–Night Band On-Orbit Radiometric Calibration. IEEE Trans. Geosci. Remote Sens. 53, 324–334.
doi:10.1109/TGRS.2014.2321835 - Levin, N., 2017. The impact of seasonal changes on observed nighttime brightness from 2014 to 2015 monthly VIIRS DNB composites. Remote Sens. Environ. 193, 150–164. doi:10.1016/j.rse.2017.03.003 - Levin, N., Zhang, Q., 2017. A global analysis of factors controlling VIIRS nighttime light levels from densely populated areas. Remote Sens. Environ. 190, 366–382. doi:10.1016/j.rse.2017.01.006 - Li, X., Xu, H., Chen, X., Li, C., 2013. Potential of NPP-VIIRS nighttime light imagery for modeling the regional economy of China. Remote Sens. 5, 3057–3081. doi:10.3390/rs5063057 - Li, X., Ma, R., Zhang, Q., Li, D., Liu, S., He, T., Zhao, L., 2019. Anisotropic characteristic of artificial light at night Systematic investigation with VIIRS DNB multi-temporal observations. Remote Sens. Environ. doi:10.1016/j.rse.2019.111357 - Liao, L.B., Weiss, S., Mills, S., Hauss, B., 2013. Suomi NPP VIIRS day-night band on-orbit performance. J. Geophys. Res. Atmos. 118, 12705–12718. doi:10.1002/2013JD020475 - Liu, Y., Wang, Z., Sun, Q., Erb, A.M., Li, Z., Schaaf, C.B., Zhang, X., Román, M.O., Scott, R.L., Zhang, Q., 2017. Evaluation of the VIIRS BRDF, Albedo and NBAR products suite and an assessment of continuity with the long term MODIS record. Remote Sens. Environ. 201, 256–274. - Liu, Hu, C., Zhan, W., Sun, C., Murch, B., Ma., L., 2017. Identifying industrial heat sources using time-series of the VIIRS Nightfire product with an object-oriented approach. Remote Sens. Environ. doi:10.1016/J.RSE.2017.10.019 - Lucht, W., Roujean, J., 2000. Considerations in the parametric modeling of BRDF and albedo from multiangular satellite sensor observations. Remote Sens. Rev. 18, 343–379. - Ma, T., Zhou, C.H., Pei, T., Haynie, S., Fan, J.F., 2014. Responses of Suomi-NPP VIIRS- derived nighttime lights to socioeconomic activity in China's cities. Remote Sens. Lett. 5, 165–174. doi:10.1080/2150704x.2014.890758 - Mann, M.L., Melaas, E.K., Malik, A., 2016. Using VIIRS Day/Night Band to Measure Electricity Supply Reliability: Preliminary Results from Maharashtra, India. Remote Sens. 8, 711. - McHardy, T.M., Zhang, J., Reid, J.S., Miller, S.D., Hyer, E.J., Kuehn, R.E., 2015. An improved method for retrieving nighttime aerosol optical thickness from the VIIRS Day/Night Band. Atmos. Meas. Tech. 8, 4773–4783. - Miller, S.D., Combs, C.L., Kidder, S.Q., Lee, T.F., 2012. Assessing Moonlight Availability for Nighttime Environmental Applications by Low-Light Visible Polar-Orbiting Satellite Sensors. J. Atmos. Ocean. Technol. 29, 538–557. doi:10.1175/JTECH-D-11-00192.1 - Miller, S.D., Haddock, S.H.D., Elvidge, C.D., Lee, T.F., 2006. Twenty thousand leagues over the seas: the first satellite perspective on bioluminescent "milky seas." Int. J. Remote Sens. 27, 5131–5143. doi:10.1080/01431160600554298 - Miller, S.D., Haddock, S.H.D., Elvidge, C.D., Lee, T.F., 2005. Detection of a bioluminescent milky sea from space. PNAS 102, 14181–14184. doi:10.1073/pnas.0507253102 - Miller, S.D., Straka, W., Mills, S.P., Elvidge, C.D., Lee, T.F., Solbrig, J., Walther, A., Heidinger, A.K., Weiss, S.C., 2013. Illuminating the capabilities of the suomi national polar-orbiting partnership (NPP) visible infrared imaging radiometer suite (VIIRS) day/night band. Remote Sens. 5, 6717–6766. - Miller, S.D., Straka, W.C., Yue, J., Smith, S.M., Alexander, M.J., Hoffmann, L., Setvák, M., Partain, P.T., 2015. Upper atmospheric gravity wave details revealed in nightglow satellite imagery. Proc. Natl. Acad. Sci. 112, E6728–E6735. - Miller, S.D., Turner, R.E., 2009. A Dynamic Lunar Spectral Irradiance Data Set for NPOESS/VIIRS Day/Night Band Nighttime Environmental Applications. IEEE Trans. Geosci. Remote Sens. 47, 2316—2329.doi:10.1109/TGRS.2009.2012696 - Miller, Mills, S.P., Elvidge, C.D., Lindsey, D.T., Lee, T.F., Hawkins, J.D., 2012. Suomi satellite brings to light a unique frontier of nighttime environmental sensing capabilities. Proc. Natl. Acad. Sci. 109, 15706–15711. doi:10.1073/pnas.1207034109 - Mills, S., Miller, S., 2016. VIIRS Day/Night Band—Correcting Striping and Nonuniformity over a Very Large Dynamic Range. J. Imaging 2, 9. doi:doi:10.3390/jimaging2010009 - Mills, S., Weiss, S., Liang, C., 2013. VIIRS day/night band (DNB) stray light characterization and correction, in: SPIE Optical Engineering+ Applications. International Society for Optics and Photonics, p. 88661P–88661P. - Minnis, P., Hong, G., Sun-Mack, S., Smith, W.L., Chen, Y., Miller, S.D., 2016. Estimating nocturnal opaque ice cloud optical depth from MODIS multispectral infrared radiances using a neural network method. J. Geophys. Res. Atmos. 121, 4907–4932. doi:10.1002/2015JD024456 - Molthan, A., Jedlovec, G., 2013. Satellite observations monitor outages from Superstorm Sandy. Eos, Trans. Am. Geophys. Union 94, 53–54. - Moody, E.G., King, M.D., Schaaf, C.B., Platnick, S., 2008. MODIS-derived spatially complete surface albedo products: Spatial and temporal pixel distribution and zonal averages. J. Appl. Meteorol. Climatol. 47, 2879–2894. doi:doi:10.1175/2008JAMC1795.1 - Moorthi, S., Pan, H.-L., Caplan, P., 2001. Changes to the 2001 NCEP operational MRF/AVN global analysis/forecast system. US Department of Commerce, National Oceanic and Atmospheric Administration, National Weather Service, Office of Meteorology, Program and Plans Division. - Morisette, J.T., Baret, F., Liang, S., 2006. Special issue on global land product validation. IEEE Trans. Geosci. Remote Sens. 44, 1695–1697. - Moustafa, S.E., Rennermalm, A.K., Román, M.O., Wang, Z., Schaaf, C.B., Smith, L.C., Koenig, L.S., Erb, A., 2017. Evaluation of satellite remote sensing albedo retrievals over the ablation area of the southwestern Greenland ice sheet. Remote Sens. Environ. 198, 115–125. - NASM, 2018. Thriving on Our Changing Planet: A Decadal Strategy for Earth Observation from Space. The National Academies Press, Washington, DC. doi:10.17226/24938 - Nicodemus, F.E., 1977. Geometrical considerations and nomenclature for reflectance, in: National Bureau of Standards Monograph, No. 160. Washington, DC, pp. 1–52.Nilson, T., 1971. A theoretical analysis of the frequency of gaps in plant stands. Agric. Meteorol. 8, 25–38. - NRC, 2017. A look into Zaatari camp during winter | NRC [WWW Document]. World Bank. URL https://www.nrc.no/news/2016/february/a-look-into-zaatari-camp-during-winter/ (accessed 10.24.17). - O'Sullivan, F., 2017. How Built-Out Barcelona Found Space for an Urban Forest CityLab [WWW Document]. URL https://www.citylab.com/solutions/2017/05/barcelona-green-urban-forest-climate-plan/526998/(accessed 6.28.17). - Oda, T., Lauvaux, T., Lu, D., Rao, P., Miles, N.L., Richardson, S.J., Gurney, K.R., 2017. On the impact of granularity of space-based urban CO 2 emissions in urban atmospheric inversions: A case study for Indianapolis, IN. Elem Sci Anth 5. - Omar, A.H., Winker, D.M., Tackett, J.L., Giles, D.M., Kar, J., Liu, Z., Vaughan, M.A., Powell, K.A., Trepte, C.R., 2013. CALIOP and AERONET aerosol optical depth comparisons: One size fits none. J. Geophys. Res. Atmos. 118, 4748–4766. - Ou, J., Liu, X., Li, X., Li, M., Li, W., 2015. Evaluation of NPP-VIIRS nighttime light data for mapping global fossil fuel combustion CO 2 emissions: a comparison with DMSP-OLS nighttime light data. PLoS One 10, e0138310. doi:10.1371/journal.pone.0138310 - Pahlevan, N., Sarkar, S., Devadiga, S., Wolfe, R.E., Román, M., Vermote, E., Lin, G., Xiong, X., 2017. Impact of Spatial Sampling on Continuity of MODIS–VIIRS Land Surface Reflectance Products: A Simulation Approach. IEEE Trans. Geosci. Remote Sens. 55, 183–196. - Park, T., Yan, K., Chen, C., Xu, B., Knyazikhin, Y., Myneni, R., 2017. VIIRS Leaf Area Index (LAI) and Fraction of Photosynthetically Active Radiation Absorbed by Vegetation (FPAR) Product Algorithm Theoretical Basis Document (ATBD), NASA Technical Report. - Paynter, I., Saenz, E., Genest, D., Peri, F., Erb, A., Li, Z., Wiggin, K., Muir, J., Raumonen, P., Schaaf, E.S., 2016. Observing ecosystems with lightweight, rapid scanning terrestrial lidar scanners. Remote Sens. Ecol. Conserv. 2, 174–189. - Polivka, T.N., Wang, J., Ellison, L.T., Hyer, E.J., Ichoku, C.M., 2016. Improving Nocturnal Fire Detection With the VIIRS Day–Night Band. IEEE Trans. Geosci. Remote Sens. 54, 5503–5519. - Riggs, G.A., Hall, D.K., Román, M.O., 2017. Overview of NASA's MODIS and VIIRS Snow-Cover Earth System Data Records. Earth Syst. Sci. Data 9, 1–13. doi:10.5194/essd-9-765-2017 - Riggs, G.A., Hall, D.K., Román, M.O., 2016. NASA S-NPP VIIRS Snow Products Collection 1 User Guide 1–26. doi:doi:10.5067/VIIRS/VNP10 L2.v001 - Roger, J.C., Vermote, E.F., Devadiga, S., Ray, J.P., 2016. Suomi-NPP VIIRS Surface Reflectance User's Guide. - Román, M., Schaaf, C.B., Yang, X., Woodcock, C.E., Strahler, A.H., Braswell, R.H., Curtis, P.S., Davis, K.J., D., D., Gu, L., Goulden, M.L., Hollinger, D.Y., Kolb, T.E., Meyers, T.P., Munger, J.W., Privette, J.L., Richardson, A.D., Wilson, T.B., Wofsy, S.C., 2009. The MODIS (Collection V005) BRDF/albedo product: Assessment of spatial representativeness over forested landscapes. Remote Sens. Environ. 113, 2476–2498. doi:doi:10.1016/j.rse.2009.07.009 - Román, M.O., Gatebe, C.K., Poudyal, R., Schaaf, C.B., Wang, Z., King, M.D., 2011. Variability in surface BRDF at different spatial scales (30 m-500 m) over a mixed agricultural landscape as retrieved from airborne and satellite spectral measurements. Remote Sens. Environ. 115, 2184–2203. doi:10.1016/j.rse.2011.04.012 - Román, M.O., Gatebe, C.K., Shuai, Y., Wang, Z., Gao, F., Masek, J.G., He, T., Liang, S., Schaaf, C.B., 2013. Use of In Situ and Airborne Multiangle Data to Assess MODIS- and Landsat-Based Estimates of Directional Reflectance and Albedo. IEEE Trans. Geosci. Remote Sens. 51, 1393–1404. doi:10.1109/TGRS.2013.2243457 - Román, M.O., Schaaf, C.B., Lewis, P., Gao, F., Anderson, G.P., Privette, J.L., Strahler, A.H., Woodcock, C.E., Barnsley, M., 2010. Assessing the coupling between
surface albedo derived from MODIS and the fraction of diffuse skylight over spatially-characterized landscapes. Remote Sens. Environ. 114, 738–760. doi:10.1016/j.rse.2009.11.014 - Román, M.O., Stokes, E.C., 2015. Holidays in lights: Tracking cultural patterns in demand for energy services. Earth's Futur. 3, 182–205. doi:10.1002/2014EF000285 - Román, M.O., Wang, Z., Sun, Q., Kalb, V., Miller, S.D., Molthan, A., Schultz, L., Bell, J., Stokes, E.C., Pandey, B. and Seto, K.C., et al. (2018). NASA's Black Marble nighttime lights product suite. Remote Sens. Environ., 210, 113-143. doi:10.1016/j.rse.2018.03.017. - Roujean, J., Leroy, M., Deschanms, P., 1992. A bidirectional reflectance model of the Earth's surface for the correction of remote sensing data. J. Geophys. Res. 97, 20,420-455,468. doi:doi:10.1029/92JD01411 - Schaaf, C.B., Gao, F., Strahler, A.H., Lucht, W., Li, X., Tsang, T., Strugnell, N.C., Zhang, X., Jin, Y., Muller, J.P.J.-P., Lewis, P., Barnsley, M., Hobson, P., Disney, M., Roberts, G., Dunderdale, M., Doll, C., d'Entremont, R.P., Hu, B., Liang, S., Privette, J.L., Roy, D.P., 2002. First operational BRDF, albedo nadir reflectance products from MODIS. Remote Sens. Environ. 83, 135–148. doi:10.1016/S0034-4257(02)00091-3 - Schaaf, Liu, J., Gao, F., Strahler, A.H., 2011a. MODIS albedo and reflectance anisotropy products from Aqua and Terra, in: Ramachandran, B., Justice, C., Abrams, M. (Eds.), Land Remote Sensing and Global Environmental Change: NASA's Earth Observing System and the Science of ASTER and MODIS. Springer-Verlag. ISBN:1441967486., p. 873. - Schaaf, Wang, Z., Strahler, A., 2011b. Commentary on Wang and Zender—MODIS snow albedo bias at high solar zenith angles relative to theory and to in situ observations in Greenland. Remote Sens. Environ. 115, 1296–1300. - Schaepman-Strub, G., Schaepman, M.E., Painter, T.H., Dangel, S., Martonchik, J. V, 2006. Reflectance quantities in optical remote sensing-definitions and case studies. Remote Sens. Environ. 103, 27–42. doi:10.1016/j.rse.2006.03.002 - Schnitt, S., Ruhtz, T., Fischer, J., Hölker, F., Kyba, C., 2013. Temperature stability of the sky quality meter. Sensors 13, 12166–12174. - Seto, K.C., Dhakal, S., 2014. Chapter 12: Human Settlements, Infrastructure, and Spatial Planning. Clim. Chang. 2014 Mitig. Clim. Chang. Contrib. Work. Gr. III to Fifth Assess. Rep. Intergov. Panel Clim. Chang. 67–76. - Sharma, R.C., Tateishi, R., Hara, K., Gharechelou, S., Iizuka, K., 2016. Global mapping of urban built-up areas of year 2014 by combining MODIS multispectral data with VIIRS nighttime light data. Int. J. Digit. Earth 9, 1004–1020. doi:10.1080/17538947.2016.1168879 - Shi, K., Huang, C., Yu, B., Yin, B., Huang, Y., Wu, J., Chang, H., Bailang, Y., Bing, Y., Yixiu, H., Jianping, W., 2014. Evaluation of NPP-VIIRS night-time light composite data for extracting built-up urban areas. Remote Sens. Lett. 5, 358–366. doi:10.1080/2150704x.2014.905728 - Shuai, Y., Schaaf, C., Zhang, X., Strahler, A., Roy, D., Morisette, J., Wang, Z., Nightingale, J., Nickeson, J., Richardson, A.D., 2013. Daily MODIS 500 m reflectance anisotropy direct broadcast (DB) products for monitoring vegetation phenology dynamics. Int. J. Remote Sens. 34, 5997–6016. - Skakun, S., Justice, C.O., Vermote, E., Roger, J.-C., 2018. Transitioning from MODIS to VIIRS: an analysis of inter-consistency of NDVI data sets for agricultural monitoring. Int. J. Remote Sens. 39, 971–992. - Strahler, A.H., Lucht, W., Schaaf, C.B., Tsang, T., Gao, F., Li, X., Muller, J.-P., Lewis, P., Barnsley, M., 1999. MODIS BRDF/Albedo Product: Algorithm Theoretical Basis Document Version 5.0. Technical Report. NASA EOS-MODIS. - Straka, W.C., Seaman, C.J., Baugh, K., Cole, K., Stevens, E., Miller, S.D., 2015. Utilization of the suomi national polar-orbiting partnership (npp) visible infrared imaging radiometer suite (viirs) day/night band for arctic ship tracking and fisheries management. Remote Sens. 7, 971–989. - Strugnell, N., Lucht, W., Schaaf, C.B., 2001. A global albedo data set derived from AVHRR data for use in climate simulations. Geophys. Res. Lett. 28, 191–194. doi:doi:10.1029/2000GL011580 - Tan, B., Woodcock, C.E., Hu, J., Zhang, P., Ozdogan, M., Huang, D., Yang, W., Knyazikhin, Y., Myneni, R.B., 2006. The impact of gridding artifacts on the local spatial properties of MODIS data: Implications for validation, compositing, and band-to-band registration across resolutions. Remote Sens. Environ. 105, 98–114. - Thaiutsa, B., Puangchit, L., Kjelgren, R., Arunpraparut, W., 2008. Urban green space, street tree and heritage large tree assessment in Bangkok, Thailand. Urban For. urban Green. 7, 219–229. - Tomasi, C., Fuzzi, S., Kokhanovsky, A., 2017. Atmospheric Aerosols: Life Cycles and Effects on Air Quality and Climate. John Wiley & Sons. - Tukey, J. W. (1977), Exploratory Data Analysis, Addison-Wesley. - UNHCR, 2017. Syria Regional Refugee Response - Emirati Jordanian Camp (Murijep al Fhoud) [WWW Document]. URL http://data.unhcr.org/syrianrefugees/settlement.php?id=224&country=0®ion=0 (accessed 10.25.17). - Vermote, E., Justice, C.O., Csiszar, I., 2014. Early evaluation of the VIIRS calibration, cloud mask and surface reflectance Earth data records. Remote Sens. Environ. 148, 134–145. doi:10.1016/j.rse.2014.03.028 - Vermote, E.F., Kotchenova, S., 2008. Atmospheric correction for the monitoring of land surfaces. J. Geophys. Res. 113. doi:doi:10.1029/2007JD009662. - Walther, A., Heidinger, A.K., Miller, S., 2013. The Expected Performance of Cloud Optical and Microphysical Properties derived from Soumi NPP VIIRS Day/Night Band Lunar Reflectance. J. Geophys. Res. Atmos. 2013JD020478. doi:10.1002/2013JD020478 - Wang, J., Aegerter, C., Xu, X., Szykman, J.J., 2016. Potential application of VIIRS Day/Night Band for monitoring nighttime surface PM 2.5 air quality from space. Atmos. Environ. 124, 55–63. - Wang, Z., Schaaf, C.B., Strahler, A.H., Chopping, M.J., Román, M.O., Shuai, Y., Woodcock, C.E., Hollinger, D.Y., Fitzjarrald, D.R., 2014. Evaluation of MODIS albedo product (MCD43A) over grassland, agriculture and forest surface types during dormant and snow-covered periods. Remote Sens. Environ. 140, 60–77. doi:10.1016/j.rse.2013.08.025 - Wang, Z., Schaaf, C.B., Strahler, A.H., Wang, J., Woodcock, C.E., Chopping, M.J., Román, M.O., Rocha, A. V, Shuai, Y., 2012. Evaluation of Moderate-resolution Imaging Spectroradiometer (MODIS) snow albedo product (MCD43A) over tundra. Remote Sens. Environ. 117, 264–280. doi:doi:10.1016/j.rse.2011.10.002 - Wang, Z., Román, M. O., Sun, Q., Molthan, A. L., Schultz, L. A., and Kalb, V. L. (2018). Monitoring Disaster-related Power Outages Using NASA Black Marble Nighttime Light Product. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3, 1853-1856, https://doi.org/10.5194/isprs-archives-XLII-3-1853-2018, 2018. - Wang, Z., Shrestha, R. and Román, M. O., (2018). NASA's Black Marble Nighttime Lights Product Suite Algorithm Theoretical Basis Document (ATBD), Version 1.0, April 2018. Available in https://viirsland.gsfc.nasa.gov/PDF/VIIRS BlackMarble ATBD V1.0.pdf. - Wickland, D., Gobron, N., Moore, B., Nakajima, M., Sathyendranath, S., Plummer, S., Schmullius, C., Dubayah, R., 2014. CEOS Strategy for Carbon Observations from Space. 40th COSPAR Sci. Assem. Held 2-10 August 2014, Moscow, Russ. Abstr. A0. 1-2-14. 40, 3626. - WMO, 2016. Observing Systems Capabilities Analysis and Review tool: Rolling Requirements Review process, http://www.wmo.int/pages/prog/www/OSY/RRR-DB.html (accessed 8.25.17). - Wolch, J.R., Byrne, J., Newell, J.P., 2014. Urban green space, public health, and environmental justice: The challenge of making cities "just green enough." Landsc. Urban Plan. 125, 234–244. Wolfe, R.E., Lin, G., Nishihama, M., Tewari, K.P., Tilton, J.C., Isaacman, A.R., 2013. Suomi NPP VIIRS prelaunch and on orbit geometric calibration and characterization. J. Geophys. Res. Atmos. 118. - Wolfe, R.E., Nishihama, M., Fleig, A.J., Kuyper, J.A., Roy, D.P., Storey, J.C., Patt, F.S., 2002. Achieving subpixel geolocation accuracy in support of MODIS land science. Remote Sens. Environ. 83, 31–49. - Wolfe, R.E., Roy, D.P., Vermote, E., 1998. MODIS land data storage, gridding, and compositing methodology: Level 2 grid. IEEE Trans. Geosci. Remote Sens. 36, 1324–1338. - World Bank, 2017. Rebuilding Infrastructure and Improving Access to Employment in Post Crisis Côte d'Ivoire [WWW Document]. World Bank. URL http://www.worldbank.org/en/results/2016/06/17/rebuilding-infrastructure-and-improving-access-to-employment-in-post-crisis-cote-divoire (accessed 10.24.17). - Xiao, Z., Liang, S., Wang, T., Jiang, B., 2016. Retrieval of Leaf Area Index (LAI) and Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) from VIIRS Time-Series Data. Remote Sens. 8, 351. - Xiong, X., Butler, J., Chiang, K., Efremova, B., Fulbright, J., Lei, N., McIntire, J., Oudrari, H., Sun, J., Wang, Z., 2014. VIIRS on orbit calibration methodology and performance. J. Geophys. Res. Atmos. 119, 5065–5078. - Yang, K., Wolfe, R.E., 2001. MODIS level 2 grid with the ISIN map projection, in: Geoscience and Remote Sensing Symposium, 2001. IGARSS'01. IEEE 2001 International. IEEE, pp. 3291–3293. - Yorks, J., Palm, S., McGill, M., Hlavka, D., Hart, W., Selmer, P., Nowottnick, E., 2015. CATS Algorithm Theoretical Basis Document Level 1 and Level 2 Data Products Release 1. - Yorks, J.E., McGill, M.J., Palm, S.P., Hlavka, D.L., Selmer, P.A., Nowottnick, E.P., Vaughan, M.A., Rodier, S.D., Hart, W.D., 2016. An overview of the CATS level 1 processing algorithms and data products. Geophys. Res. Lett. 43, 4632–4639. doi:10.1002/2016GL068006 - Yu, B., Shi, K., Hu, Y., Huang, C., Chen, Z., Wu, J., 2015. Poverty evaluation using NPP-VIIRS nighttime light composite data at the county level in China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 8, 1217–1229. doi:10.1109/JSTARS.2015.2399416 Zhang, Q., Pandey, B., Seto, K.C., 2016. A Robust Method to
Generate a Consistent Time Series From DMSP/OLS Nighttime Light Data. IEEE Trans. Geosci. Remote Sens. 54, 5821–5831. Zhao, F., Strahler, A.H., Schaaf, C., Yao, T., Yang, X., Wang, Z., Schull, M.A., Román, M.O., Woodcock, C.E., Olofsson, P., Ni-Meister, W., Jupp, D.L.B., Lovell, J.L., Culvenor, D.S., Newnham, G.J., 2012. Measuring Gap Fraction, Element Clumping Index and LAI in Sierra Forest Stands Using a Full-waveform Ground-Based Lidar. Remote Sens. Environ. 125, 73–79. doi:doi:10.1016/j.rse.2012.07.007 Zhao, X., Shi, H., Yu, H., Yang, P., 2016. Inversion of Nighttime PM2.5 Mass Concentration in Beijing Based on the VIIRS Day-Night Band. Atmosphere, 7, 136. # Appendix A: Metadata (Attributes) in VNP46A1 Product ``` netcdf VNP46A1.A2013200.h10v04.001.2019115102717.h5 { // global attributes: :Platform Short Name = "NPP"; :ProductionTime = "2019-04-25 10:27:17.000"; :ShortName = "VNP46A1": :PGEVersion = "1.0.8"; :PGE EndTime = "2013-07-19 23:59:59.000000Z"; :HorizontalTileNumber = "10"; :identifier_product_doi_authority = "http://dx.doi.org"; :PGE Name = "PGE554"; :ProcessVersion = "001"; :EndTime = "2013-07-19 23:59:59" : :VerticalTileNumber = "04"; "/MODAPSops4/archive/f7066/running/VNP LP L5lm7/1694463630/NPP VMAES L1.A2013200.0536.001.2016356233722.hdf,/MODAPSops4/archiv e/f7066/running/VNP LP L5Im7/1694463630/NPP VMAES L1.A2013200.0718.001.2016357002057.hdf,/MODAPSops4/archive/f7066/running/VNP LP L5lm7/1694463630/NPP VMAES L1.A2013200.0854.001.2016357005444.hdf,/MODAPSops4/archive/f7066/running/VNP LP L5lm7/1694463630 /VNP35 L2.A2013200.0536.001.2016357002544.hdf,/MODAPSops4/archive/f7066/running/VNP LP L5lm7/1694463630/VNP35 L2.A2013200.0718.0 APSops4/archive/f7066/running/VNP_LP_L5lm7/1694463630/NPP_VDNES_L1.A2013200.0536.001.2016356233722.hdf,/MODAPSops4/archive/f7066/ running/VNP_LP_L5lm7/1694463630/NPP_VDNES_L1.A2013200.0718.001.2016357002057.hdf,/MODAPSops4/archive/f7066/running/VNP_LP_L5lm 7/1694463630/NPP VDNES L1.A2013200.0854.001.2016357005444.hdf"; :LongName = "VIIRS/NPP Daily Gridded Day Night Band Linear Lat Lon Grid Night"; :AlgorithmType = "OPS" : :StartTime = "2013-07-19 00:00:00"; :InstrumentShortname = "VIIRS" : :identifier_product_doi = "10.5067/VIIRS/VNP46A1.001"; :SatelliteInstrument = "NPP_OPS"; :LocalGranuleID = "VNP46A1.A2013200.h10v04.001.2019115102717.h5"; :TileID = "61010004"; :ProcessingEnvironment = "Linux minion7066 3.10.0-957.5.1.el7.x86 64 #1 SMP Fri Feb 1 14:54:57 UTC 2019 x86 64 x86 64 x86 64 GNU/Linux"; :NumberofInputGranules = "3"; :PGE_StartTime = "2013-07-19 00:00:00.000"; group: HDFEOS { group: ADDITIONAL { group: FILE ATTRIBUTES { } // group FILE ATTRIBUTES } // group ADDITIONAL group: GRIDS { group: VNP_Grid_DNB { // group attributes: InputPointer CM = "NPP_CMN.data.h10v04.A2013200.0536.hdf:NPP_CMN.data.h10v04.A2013200.0718.hdf:NPP_CMN.data.h10v04.A2013200.0854.hdf"; :InputPointer L2G DNB = "NPP DNBN.data.h10v04.A2013200.0536.hdf:NPP DNBN.data.h10v04.A2013200.0718.hdf:NPP DNBN.data.h10v04.A2013200.0854.hdf"; : InputPointer \ L2G_Ang = \\ "NPP_DNBN.angles.h10v04.A2013200.0536.hdf: NPP_DNBN.angles.h10v04.A2013200.0718.hdf: NPP_DNBN.angles.h10v04.A2013200.0854.hdf"; \\ : NPP_DNBN.angles.h10v04.A2013200.0536.hdf: NPP_DNBN.angles.h10v04.A2013200.0718.hdf: NPP_DNBN.angles.h10v04.A2013200.0854.hdf"; \\ : NPP_DNBN.angles.h10v04.hdf"; \\ : NPP_DNBN.angles.h10v04.hdf"; \\ : NPP_DNBN.angles.h10v04.hdf"; \\ : NPP_DNBN.angles.h10v04.hdf"; \\ : NPP_D :InputPointer L2G PNTR = "NPP_PTDN.h10v04.A2013200.0536.hdf:NPP_PTDN.h10v04.A2013200.0718.hdf:NPP_PTDN.h10v04.A2013200.0854.hdf"; :InputPointer DNB = "/MODAPSops4/archive/f7066/running/VNP LP L5lm7/1694463630/NPP VDNES L1.A2013200.0536.001.2016356233722.hdf:/MODAPSops4/archiv e/f7066/running/VNP LP L5lm7/1694463630/NPP VDNES L1.A2013200.0718.001.2016357002057.hdf:/MODAPSops4/archive/f7066/running/VNP LP L5lm7/1694463630/NPP VDNES L1.A2013200.0854.001.2016357005444.hdf"; :InputPointer_Mod = "NPP_MOD.data.h10v04.A2013200.0536.hdf:NPP_MOD.data.h10v04.A2013200.0718.hdf:NPP_MOD.data.h10v04.A2013200.0854.hdf"; :useCM = "No"; :CMfill = "No"; :RangeBeginningDate = "2013-07-19"; :RangeBeginningTime = "00:00:00"; :RangeEndingDate = "2013-07-19"; :RangeEndingTime = "23:59:59"; :NorthBoundingCoord = 50.; :SouthBoundingCoord = 40.; ``` ``` :EastBoundingCoord = -70.; :WestBoundingCoord = -80.; :TileID = 610\bar{10}004; :TileMode = "Night"; :HorizontalTileNumber = 10; :VerticalTileNumber = 4: :NumberofInputGranules = 3; :PGE_Name = "PGE554"; :PGEVersion = "1.0.8"; :SatelliteInstrument = "NPP OPS"; :ReprocessingPlanned = "metadata field"; :ReprocessingActual = "metadata field"; :ProcessingEnvironment = "Linux minion7066 3.10.0-957.5.1.el7.x86 64 #1 SMP Fri Feb 1 14:54:57 UTC 2019 x86 64 x86 64 x86 64 GNU/Linux"; :ScienceQualityFlagExplanation = "unknown"; group: Data\ Fields { dimensions: phony_dim_0 = 2400; variables: ushort BrightnessTemperature M12(phony dim 0, phony dim 0); BrightnessTemperature_M12:valid_min = 0; BrightnessTemperature_M12:valid_max = 65534; BrightnessTemperature M12: FillValue = 65535US; BrightnessTemperature_M12:long_name = "Brightness Temperature of band M12"; BrightnessTemperature_M12:units = "Kelvins" BrightnessTemperature_M12:scale_factor = 0.0025f; BrightnessTemperature M12:add offset = 203.f; ushort BrightnessTemperature_M13(phony_dim_0, phony_dim_0); BrightnessTemperature_M13:valid_min = 0; BrightnessTemperature_M13:valid_max = 65534; BrightnessTemperature_M13: FillValue = 65535US; BrightnessTemperature_M13:long_name = "Brightness Temperature of band M13"; BrightnessTemperature_M13:units = "Kelvins"; BrightnessTemperature M13:scale factor = 0.0025f; BrightnessTemperature_M13:add_offset = 203.f; ushort BrightnessTemperature_M15(phony_dim_0, phony_dim_0); BrightnessTemperature_M15:valid_min = \overline{0}; BrightnessTemperature_M15:valid_max = 65534; BrightnessTemperature_M15:_FillValue = 65535US; BrightnessTemperature_M15:long_name = "Brightness Temperature of band M15"; BrightnessTemperature_M15:units = "Kelvins"; BrightnessTemperature M15:scale factor = 0.0041f; BrightnessTemperature M15:add offset = 111.f; ushort BrightnessTemperature_M16(phony_dim_0, phony_dim_0); BrightnessTemperature M16:valid min = 0; BrightnessTemperature M16:valid max = 65534; BrightnessTemperature_M16:_FillValue = 65535US; BrightnessTemperature_M16:long_name = "Brightness Temperature of band M16"; BrightnessTemperature M16:units = "Kelvins" BrightnessTemperature_M16: scale_factor = 0.0043f~; BrightnessTemperature_M16:add_offset = 103.f; ushort DNB At Sensor Radiance 500m(phony dim 0, phony dim 0); DNB At Sensor Radiance 500m:valid min = 0; DNB At Sensor Radiance 500m:valid max = 65534; DNB_At_Sensor_Radiance_500m:long_name = "DNB at Sensor Radiance"; DNB_At_Sensor_Radiance_500m:_FillValue = 65535US; DNB At Sensor Radiance 500m:units = "nW/(cm2 sr)"; DNB_At_Sensor_Radiance_500m:scale_factor = 0.1f; DNB At Sensor Radiance 500m:add offset = 0.f; short Glint_Angle(phony_dim_0, phony_dim_0); Glint Angle:valid min = -18000; Glint_Angle:valid max = 18000; Glint_Angle: FillValue = -32768s; Glint Angle:long name = "Glint Angle"; Glint Angle:units = "degrees" Glint_Angle:scale_factor = 0.01f; Glint_Angle:add_offset = 0.f; ubyte Granule(phony dim 0, phony dim 0); Granule:valid_min = \overline{0}; Granule:valid_max = 254 Granule:_FillValue = 255UB; Granule: long name = "Number of selected Granule"; Granule:units = "none": ``` Granule:scale_factor = 1.f; ``` Granule:add offset = 0.f; short Lunar Azimuth(phony dim 0, phony dim 0); Lunar_Azimuth:valid_min = -18000; Lunar Azimuth:valid max = 18000; Lunar Azimuth: FillValue = -32768s; Lunar_Azimuth:long_name = "Lunar Azimuth Angle"; Lunar Azimuth:units = "degrees" Lunar_Azimuth:scale_factor = 0.01f; Lunar Azimuth:add offset = 0.f; short Lunar_Zenith(phony_dim_0, phony_dim_0); Lunar Zenith:valid min = 0; Lunar_Zenith:valid_max = 18000; Lunar Zenith: FillValue = -32768s; Lunar_Zenith:long_name = "Lunar Zenith Angle"; Lunar_Zenith:units = "degrees" Lunar Zenith:scale factor = 0.01f; Lunar Zenith:add offset = 0.f; short Moon_Illumination_Fraction(phony_dim_0, phony_dim_0); Moon_Illumination_Fraction:valid_min = 0; Moon Illumination Fraction:valid max = 10000; Moon Illumination Fraction: FillValue = -32768s; Moon_Illumination_Fraction:long_name = "Moon Illumination Fraction"; Moon Illumination Fraction:units = "percentage"; Moon Illumination Fraction:scale factor = 0.01f; Moon Illumination Fraction; add offset = 0.f; short Moon_Phase_Angle(phony_dim_0, phony_dim_0); Moon_Phase_Angle:valid_min = 0; Moon Phase Angle:valid max = 18000; Moon_Phase_Angle:_FillValue = -32768s; Moon_Phase_Angle:long_name = "Moon Phase Angle"; Moon_Phase_Angle:units = "degrees" : Moon_Phase_Angle:scale_factor = 0.01f; Moon_Phase_Angle:add_offset = 0.f; ushort QF_Cloud_Mask(phony_dim_0, phony_dim_0); QF Cloud Mask:valid min = 0; OF Cloud Mask:valid max = 65534: QF Cloud Mask: FillValue = 65535US; QF_Cloud_Mask:long_name = "Cloud Mask Status"; QF Cloud Mask:units = "class flags"; QF Cloud Mask:flag meanings = "bit 0: 0=Night, 1=Day\n bits 1-3: Land/Water 000=Land & Desert, 001=Land & no Desert, 010=Inland Water, 011=Sea Water, 101=Coastal\n bits 4-5: Cloud Mask Quality 00=Poor, 01=Low, 10=Medium, 11=High\n bits 6-7: Cloud Confidence 00=Confidence Clear, 01=Probably Clear, 10=Probably Cloudy, 11=Confident Cloudy\n bit 8: Shadow Detected 1=Yes, 0=No\n bit 9: Cirrus Detection (IR) 1=Cloud, 0=No Cloud\n bit 10: Snow/Ice 1=Snow/Ice, 0=No Snow/Ice\n"; ushort QF DNB(phony dim 0, phony dim 0); QF_DNB:valid_min = 0; QF DNB:valid max = 65534; QF DNB: FillValue = 65535US; QF_DNB:long_name = "DNB QF"; QF_DNB:units = "class flags"; ushort QF VIIRS M10(phony dim 0, phony dim 0); QF_VIIRS_M10:valid_min = 0; QF_VIIRS_M10:valid_max = 65534; QF VIIRS M10: FillValue = 65535US; QF VIIRS M10:long name = "Quality Flag of Band M10"; OF VIIRS M10:units = "class flags": ushort QF_VIIRS_M11(phony_dim_0, phony_dim_0); QF_VIIRS_M11:valid_min = 0; QF VIIRS M11:valid
max = 65534; QF VIIRS M11: FillValue = 65535US; QF_VIIRS_M11:long_name = "Quality Flag of Band M11"; QF_VIIRS_M11:units = "class flags"; ushort QF VIIRS M12(phony dim 0, phony dim 0); QF_{VIIRS_{min}} = 0; QF_VIIRS_M12:valid_max = 65534; QF VIIRS M12: FillValue = 65535US; QF_VIIRS_M12:long_name = "Quality Flag of Band M12"; QF VIIRS M12:units = "class flags"; ushort QF_VIIRS_M13(phony_dim_0, phony_dim_0); QF VIIRS \overline{M}13:valid \overline{min} = \overline{0}; QF_VIIRS_M13:valid_max = 65534; QF_VIIRS_M13:_FillValue = 65535US; QF_VIIRS_M13:long_name = "Quality Flag of Band M13"; QF VIIRS M13:units = "class flags"; ushort QF VIIRS_M15(phony_dim_0, phony_dim_0); QF_VIIRS_M15:valid_min = 0; ``` ``` QF VIIRS M15:valid max = 65534; QF VIIRS M15: FillValue = 65535US; QF_VIIRS_M15:long_name = "Quality Flag of Band M15"; QF_VIIRS_M15:units = "class flags"; ushort QF VIIRS M16(phony dim 0, phony dim 0); QF VIIRS \overline{M}16:valid \overline{min} = \overline{0}; QF_VIIRS_M16:valid_max = 65534; QF_VIIRS_M16:_FillValue = 65535US; QF VIIRS M16:long name = "Quality Flag of Band M16"; QF_VIIRS_M16:units = "class flags"; ushort Radiance_M10(phony_dim_0, phony_dim_0); Radiance_M10:valid_min = 0; Radiance M10:valid max = 65534; Radiance M10: FillValue = 65535US; Radiance_M10:long_name = "Band M10 Radiance"; Radiance M10:units = "W/(m2 micron sr)"; Radiance_M10:scale_factor = 0.0013f; Radiance_M10:add_offset = -0.04f; ushort Radiance_M11(phony_dim_0, phony_dim_0); Radiance M11:valid min = 0; Radiance_M11:valid_max = 65534; Radiance_M11:_FillValue = 65535US; Radiance_M11:long_name = "Band M11 Radiance"; Radiance M11:units = "W/(m2 micron sr)"; Radiance M11:scale factor = 0.00058f: Radiance_M11:add_offset = -0.02f; short Sensor_Azimuth(phony_dim_0, phony_dim_0); Sensor Azimuth:valid min = -18000; Sensor_Azimuth:valid max = 18000; Sensor Azimuth: FillValue = -32768s; Sensor_Azimuth:long_name = "Sensor Azimuth Angle"; Sensor Azimuth:units = "degrees"; Sensor_Azimuth:scale_factor = 0.01f; Sensor_Azimuth:add_offset = 0.f; short Sensor Zenith(phony dim 0, phony dim 0); Sensor_Zenith:valid min = -9000; Sensor_Zenith:valid_max = 9000; Sensor_Zenith:_FillValue = -32768s; Sensor Zenith: long name = "Sensor Zenith Angle"; Sensor Zenith:units = "degrees"; Sensor_Zenith:scale_factor = 0.01f; Sensor_Zenith:add_offset = 0.f; short Solar Azimuth(phony dim 0, phony dim 0); Solar Azimuth:valid min = -18000; Solar_Azimuth:valid_max = 18000; Solar Azimuth: FillValue = -32768s; Solar_Azimuth:long_name = "Solar Azimuth Angle"; Solar Azimuth:units = "degrees"; Solar_Azimuth:scale_factor = 0.01f; Solar Azimuth:add offset = 0.f; short Solar_Zenith(phony_dim_0, phony_dim_0); Solar_Zenith:valid_min = 0; Solar_Zenith:valid_max = 18000; Solar Zenith: FillValue = -32768s; Solar_Zenith:long_name = "Solar Zenith Angle"; Solar_Zenith:units = "degrees"; Solar_Zenith:scale_factor = 0.01f; Solar_Zenith:add_offset = 0.f; float UTC_Time(phony_dim_0, phony_dim_0); UTC_Time:valid_min = 0; UTC_Time:valid_max = 24; UTC_Time: FillValue = -999.9f; UTC_Time:long_name = "View Time (UTC)"; UTC_Time:units = "decimal hours"; UTC_Time:scale_factor = 1.f; UTC_Time:add_offset = 0.f; } // group Data\ Fields } // group VNP_Grid_DNB } // group GRIDS } // group HDFEOS group: HDFEOS\ INFORMATION { variables: string StructMetadata.0; ``` ``` // group attributes: :HDFEOSVersion = "HDFEOS_5.1.15" ; } // group HDFEOS\ INFORMATION ``` ### Appendix B: Metadata (Attributes) in VNP46A2 Product ``` netcdf VNP46A2.A2013200.h34v13.001.2020155060713.h5 { // global attributes: :SatelliteInstrument = "NPP OPS"; :DayNightFlag = "" ; :PGENumber = "555" ; :LongName = "VIIRS/NPP Gap-Filled Lunar BRDF-Adjusted Nighttime Lights Daily L3 Global Linear Lat Lon Grid" ; :RangeBeginningTime = "00:00:00:00.000"; :NorthBoundingCoord = -40.f; :NorthBoundingCoota - - - - - - ; :VersionID = "001"; :RangeEndingDate = "2013-07-19"; :PGE_StartTime = "2013-07-19 00:00:00.000"; :StartTime = "2013-07-19 00:00:00.000"; :LocalGranuleID = "VNP46A2.A2013200.h34v13.001.2020155060713.h5"; :ProductionTime = "2020-06-03 06:07:13.000"; :GRingPointLongitude = 160., 160., 170., 170.; :PlatformShortName = "NPP"; :identifier_product_doi_authority = "http://dx.doi.org"; :EndTime = "2013-07-19 23:59:59.000"; :VerticalTileNumber = "13"; :PGE Name = "PGE555"; :InputPointer = "VNPLG09GA.A2013200.h34v13.001.2020154195322.h5,VNPLG43DNBA1.A2013200.h34v13.001.2020155040500.h5,MCD12Q1.A2013001.Global.0 05.T1.Geo.h34v13.bin, MCD12Q1.A2013001.Global.005.T3.Geo.h34v13.bin, VNP46A1.A2013200.h34v13.001.2019115103737.h5, VNP04LGA.A2013200.h34v13.bin, MCD12Q1.A2013001.Global.005.T3.Geo.h34v13.bin, NPA6A1.A2013200.h34v13.bin, MCD12Q1.A2013001.Global.005.T3.Geo.h34v13.bin, NPA6A1.A2013200.h34v13.bin, MCD12Q1.A2013001.Global.005.T3.Geo.h34v13.bin, NPA6A1.A2013200.h34v13.bin, MCD12Q1.A2013001.Global.005.T3.Geo.h34v13.bin, NPA6A1.A2013200.h34v13.bin, NPA 0.h34v13.001.2020155060525.hdf"; :RangeBeginningDate = "2013-07-19"; :SensorShortname = "VIIRS"; :ProcessingEnvironment = "Linux minion7414 3.10.0-1062.12.1.el7.x86_64 #1 SMP Tue Feb 4 23:02:59 UTC 2020 x86_64 x GNU/Linux"; :TileID = "61034013"; :GRingPointLatitude = -50., -40., -40., -50.; :AlgorithmType = "SCI"; :PGE EndTime = "2013-07-19 23:59:59.000"; :SouthBoundingCoord = -50.f; :LSIPS_AlgorithmVersion = "NPP_PR46A2 1.0.3"; :GranuleDayNightFlag = ""; :DataResolution = "Moderate" :ProcessingCenter = "LandSIPS"; :HorizontalTileNumber = "34"; :PGEVersion = "1.0.6"; :ShortName = "VNP46A2"; :EastBoundingCoord = 170.f; :WestBoundingCoord = 160.f; :identifier product doi = "10.5067/VIIRS/VNP46A2.001"; :RangeEndingTime = "23:59:59.000"; group: HDFEOS { group: ADDITIONAL { group: FILE_ATTRIBUTES { } // group FILE_ATTRIBUTES } // group ADDITIONAL group: GRIDS { group: VNP_Grid_DNB { group: Data\ Fields { dimensions: phony dim 0 = 2400; variables: ushort DNB_BRDF-Corrected_NTL(phony_dim_0, phony_dim_0); DNB_BRDF-Corrected_NTL:_FillValue = 65535US; DNB_BRDF-Corrected_NTL:long_name = "BRDF Corrected DNB Radiance"; DNB_BRDF-Corrected_NTL:units = "nWatts/(cm^2 sr) \n"; DNB_BRDF-Corrected_NTL:valid_range = "0-65534 \n"; DNB_BRDF-Corrected_NTL:offset = 0.; DNB_BRDF\text{-}Corrected_NTL\text{:}scale_factor = 0.1 ; ``` ``` ushort DNB Lunar Irradiance(phony dim 0, phony dim 0); DNB Lunar Irradiance: FillValue = 65535US: DNB_Lunar_Irradiance:long_name = "Lunar Irradiance"; DNB Lunar Irradiance:units = "nWatts/cm^2 \n"; DNB Lunar Irradiance:valid range = "0-65534 \n"; DNB Lunar Irradiance:offset = 0.: DNB Lunar Irradiance:scale factor = 0.1; ushort Gap_Filled_DNB_BRDF-Corrected_NTL(phony_dim_0, phony_dim_0); Gap Filled DNB BRDF-Corrected NTL: FillValue = 65535US; Gap_Filled_DNB_BRDF-Corrected_NTL:long_name = "Gap Filled BRDF Corrected DNB Radiance"; Gap_Filled_DNB_BRDF-Corrected_NTL:units = "nWatts/(cm^2 sr) \n"; Gap_Filled_DNB_BRDF-Corrected_NTL:valid_range = "0-65534 \n"; Gap Filled DNB BRDF-Corrected NTL:offset = 0.; Gap Filled DNB BRDF-Corrected NTL:scale factor = 0.1; ubyte Latest_High_Quality_Retrieval(phony_dim_0, phony_dim_0); Latest High Quality Retrieval: FillValue = 255UB; Latest_High_Quality_Retrieval:long_name = "The Latest High Quality BRDF Corrected DNB Radiance Retrieval"; Latest_High_Quality_Retrieval:units = "Number of Days \n"; Latest_High_Quality_Retrieval:valid_range = "0 - 254 \n"; Latest High Quality Retrieval:scale factor = 1.; Latest_High_Quality_Retrieval:offset = 0.; ubyte Mandatory_Quality_Flag(phony_dim_0, phony_dim_0); Mandatory_Quality_Flag:_FillValue = 255UB; Mandatory Quality Flag:long name = "Mandatory Quality Flag of BRDF Corrected DNB Radiance"; Mandatory_Quality Flag:units = "Unitless \n"; Mandatory_Quality_Flag:valid_range = "0 - 3 \n"; Mandatory_Quality_Flag:valid_range = "0 - 3 \n"; Mandatory_Quality_Flag:Description = "00\tHigh-Quality\tMain Algorithm (Persistent Nighttime Lights)\n01\tHigh-Quality\tMain Algorithm (Ephemeral Nighttime Lights)\n02\tPoor-Quality\tMain Algorithm (Outlier, Potential cloud contamination or other issues)\n255\tNo Retrieval\tFill Value \n": ushort\ QF_Cloud_Mask(phony_dim_0,\ phony_dim_0)\ ; QF_Cloud_Mask:_FillValue = 65535US; QF_Cloud_Mask:long_name = "Cloud Mask Status"; QF Cloud Mask:units = "Unitless \n"; QF_Cloud_Mask:valid_range = "0 - 65534 \n"; QF Cloud Mask:Description = "bit Flag description key: \n0\t Day/Night \n 0=Night 1=Day \n1-3\t Land/Water Background \n\t\t000=Land & Desert \n\t\t001=Land no Desert \n\t\t010=Inland Water \n\t\t011=Sea Water \n\t\t101=Coastal \n4-5\t Cloud Mask Quality \n\t\t00=Poor\n\t\t01=Low\n\t\t10=Medium\n\t\t11=High\n6-7\t Cloud Detection Results & Confidence Indicator\n\t\t00=Confident Clear \n\t\t0=\Probably Clear \n\t\t10=\Probably Cloudy \n\t\t1\frac{1}{1}=\Confident Cloudy \n8\t Shadow Detected \n\t\t1=\Yes 0=\No \n9\t Cirrus Detection (IR) (BTM15-BTM16) \n\t\t1=Cloud 0=No Cloud \n10 Snow/Ice \n 1=Snow/Ice, 0=No Snow/Ice \n"; ubyte Snow_Flag(phony_dim_0, phony_dim_0); Snow_Flag:_FillValue = 255UB; Snow_Flag:long_name = "Snow/Ice Status"; Snow Flag:units = "Unitless \n"; Snow Flag:valid range = "0 - 1 \n"; Snow_Flag:Description = "0 = \text{No snow/ice } \setminus 1 = \text{snow/ice } \setminus n"; } // group Data\ Fields } // group VNP Grid DNB } // group GRIDS } // group HDFEOS group: HDFEOS\ INFORMATION { variables: string StructMetadata.0; // group attributes: :HDFEOSVersion = "HDFEOS_5.1.15"; } // group HDFEOS\ INFORMATION ``` ## Appendix C: Metadata (Attributes) in VNP46A3 Product Group size = 2 Number of attributes = 34 AlgorithmType = SCI AlgorithmVersion = NPP PR46A3 2.0.0 Conventions = CF-1.6 DataResolution = 15 arc-second DayNightFlag = Night EndTime = 2018-08-01 00:00:00 HorizontalTileNumber = 06 InputPointer = VNP46A1.A2018182.h06v05.001.2019194180841.h5, VNP46A1.A2018183.h06v05.001.2019194193646 .h5,VNP46A1.A2018184.h06v05.001.2019194184433.h5,VNP46A1.A2018185.h06v05.001.2019194193 216.h5, VNP46A1.A2018186.h06v05.001.2019194192910.h5, VNP46A1.A2018187.h06v05.001.2019194
201314.h5,VNP46A1.A2018188.h06v05.001.2019194204007.h5,VNP46A1.A2018189.h06v05.001.2019 194205610.h5,VNP46A1.A2018190.h06v05.001.2019194210836.h5,VNP46A1.A2018191.h06v05.001.2 019194214016.h5,VNP46A1.A2018192.h06v05.001.2019194215926.h5,VNP46A1.A2018193.h06v05.0 01.2019194225222.h5,VNP46A1.A2018194.h06v05.001.2019194225425.h5,VNP46A1.A2018195.h06v 05.001.2019194231815.h5, VNP46A1.A2018196.h06v05.001.2019194232434.h5, VNP46A1.A2018197.h 06v05.001.2019194234549.h5,VNP46A1.A2018198.h06v05.001.2019195000500.h5,VNP46A1.A20181 99.h06v05.001.2019195005010.h5, VNP46A1.A2018200.h06v05.001.2019195005953.h5, VNP46A1.A20 18201.h06v05.001.2019195022017.h5,VNP46A1.A2018202.h06v05.001.2019195013145.h5,VNP46A1. A2018203.h06v05.001.2019195015640.h5,VNP46A1.A2018204.h06v05.001.2019195023109.h5,VNP46 A1.A2018205.h06v05.001.2019196140441.h5,VNP46A1.A2018206.h06v05.001.2019196163318.h5,VN P46A1.A2018207.h06v05.001.2019196171208.h5,VNP46A1.A2018208.h06v05.001.2019196171354.h5, VNP46A1.A2018209.h06v05.001.2019196172238.h5, VNP46A1.A2018210.h06v05.001.2019196181758 .h5,VNP46A1.A2018211.h06v05.001.2019196185014.h5,VNP46A1.A2018212.h06v05.001.2019196185 126.h5, VNP46A2.A2018182.h06v05.001.2020343155445.h5, VNP46A2.A2018183.h06v05.001.2020343 164259.h5,VNP46A2.A2018184.h06v05.001.2020343172948.h5,VNP46A2.A2018185.h06v05.001.2020 343181842.h5,VNP46A2.A2018186.h06v05.001.2020343190314.h5,VNP46A2.A2018187.h06v05.001.2 020343194858.h5,VNP46A2.A2018188.h06v05.001.2020343204138.h5,VNP46A2.A2018189.h06v05.0 01.2020343212856.h5,VNP46A2.A2018190.h06v05.001.2020343222642.h5,VNP46A2.A2018191.h06v 05.001.2020343231735.h5, VNP46A2.A2018192.h06v05.001.2020343235424.h5, VNP46A2.A2018193.h 95.h06v05.001.2020344013818.h5,VNP46A2.A2018196.h06v05.001.2020344021310.h5,VNP46A2.A20 18197.h06v05.001.2020344024631.h5,VNP46A2.A2018198.h06v05.001.2020344031936.h5,VNP46A2. A2018199.h06v05.001.2020344035615.h5,VNP46A2.A2018200.h06v05.001.2020344043242.h5,VNP46 A2.A2018201.h06v05.001.2020344050922.h5,VNP46A2.A2018202.h06v05.001.2020344054229.h5,VN P46A2.A2018203.h06v05.001.2020344061554.h5, VNP46A2.A2018204.h06v05.001.2020344064733.h5, VNP46A2.A2018205.h06v05.001.2020344072948.h5, VNP46A2.A2018206.h06v05.001.2020344080837 .h5,VNP46A2.A2018207.h06v05.001.2020344091604.h5,VNP46A2.A2018208.h06v05.001.2020344101 454.h5, VNP46A2.A2018209.h06v05.001.2020344105623.h5, VNP46A2.A2018210.h06v05.001.2020344 120527.h5,VNP46A2.A2018211.h06v05.001.2020344134430.h5,VNP46A2.A2018212.h06v05.001.2020 344152335.h5 LocalGranuleID = VNP46A3.A2018182.h06v05.002.2021056211943.h5 LongName = VIIRS/NPP Lunar BRDF-Adjusted Nighttime Lights Monthly L3 Global 15 arcsecond Linear Lat Lon Grid NumberofInputGranules = 31 PGENumber = 556 PGEVersion = 2.0.0 ``` PGE EndTime = 2018-08-01 00:00:00.000 PGE Name = PGE556 PGE StartTime = 2018-07-01 00:00:00.000 PlatformShortName = SUOMI-NPP ProcessVersion = 002 ProcessingCenter = LandSIPS ProcessingEnvironment = Linux minion7092 3.10.0-1127.18.2.el7.x86 64 #1 SMP Sun Jul 26 15:27:06 UTC 2020 x86 64 x86 64 x86 64 GNU/Linux ProductionTime = 2021-02-25 21:19:43.000 RangeBeginningDate = 2018-07-01 RangeBeginningTime = 00:00:00.000000 RangeEndingDate = 2018-07-31 RangeEndingTime = 23:59:00.000000 SatelliteInstrument = NPP OPS SensorShortname = VIIRS ShortName = VNP46A3 StartTime = 2018-07-01 00:00:00 TileID = 61006005 VersionID = 002 VerticalTileNumber = 05 identifier product doi = 10.5067/VIIRS/VNP46A3.002 identifier product doi authority = https://doi.org variables: short AllAngle Composite Snow Covered(fakeDim0, fakeDim1); AllAngle Composite Snow Covered: FillValue = -1s; AllAngle Composite Snow Covered:long name = "Temporal Radiance Composite Using All Observations During Snow-covered Period"; AllAngle Composite Snow Covered:units = "nWatts/(cm^2 sr)"; AllAngle Composite Snow Covered:valid range = 0s, -2s; AllAngle Composite Snow Covered:scale factor = 0.1; AllAngle Composite Snow Covered:offset = 0.; AllAngle Composite Snow Covered:coordinates = "latitude longitude"; short AllAngle Composite Snow Covered Num(fakeDim2, fakeDim3); AllAngle Composite Snow Covered Num: FillValue = -1s; AllAngle Composite Snow Covered Num:long name = "Number of Observations of Temporal Radiance Composite Using All Observations During Snow-covered Period"; AllAngle Composite Snow Covered Num:units = "number of observations"; AllAngle Composite Snow Covered Num:valid range = 0s, -2s: AllAngle Composite Snow Covered Num:scale factor = 1.; AllAngle Composite Snow Covered Num:offset = 0.; AllAngle Composite Snow Covered Num:coordinates = "latitude longitude"; byte AllAngle Composite Snow Covered Quality(fakeDim4, fakeDim5); AllAngle Composite Snow Covered Quality: FillValue = '\377'; AllAngle Composite Snow Covered Quality:long name = "Quality Flag of Temporal Radiance Composite Using All Observations During Snow-covered Period"; AllAngle Composite Snow Covered Quality:units = "quality flag, no units"; AllAngle Composite Snow Covered Quality:valid range = '\0', '\376'; AllAngle Composite Snow Covered Quality:scale factor = 1.; AllAngle Composite Snow Covered Quality:offset = 0.; AllAngle Composite Snow Covered Quality:Description = "Quality:\n", "\t 0 = Good quality \n", ``` ``` "\t 1 = \text{Poor quality} \cdot \text{n}". "\t 2 = \text{Gap filled} \", "\t 255 = \text{Fill value} \text{ n}", "\t"; AllAngle Composite Snow Covered Quality:coordinates = "latitude longitude"; short AllAngle Composite Snow Covered Std(fakeDim6, fakeDim7); AllAngle Composite Snow Covered Std: FillValue = -1s; AllAngle Composite Snow Covered Std:long name = "Standard Deviation of Temporal Radiance Composite Using All Observations During Snow-covered Period"; AllAngle Composite Snow Covered Std:units = "nWatts/(cm^2 sr)"; AllAngle Composite Snow Covered Std:valid range = 0s, -2s; AllAngle Composite Snow Covered Std:scale factor = 0.1; AllAngle Composite Snow Covered Std:offset = 0.; AllAngle Composite Snow Covered Std:coordinates = "latitude longitude"; short AllAngle Composite Snow Free(fakeDim8, fakeDim9): AllAngle Composite Snow Free: FillValue = -1s; AllAngle Composite Snow Free:long name = "Temporal Radiance Composite Using All Observations During Snow-free Period"; AllAngle Composite Snow Free:units = "nWatts/(cm^2 sr)"; AllAngle Composite Snow Free:valid range = 0s, -2s; AllAngle Composite Snow Free:scale factor = 0.1; AllAngle Composite Snow Free:offset = 0.; AllAngle Composite Snow Free:coordinates = "latitude longitude"; short AllAngle Composite Snow Free Num(fakeDim10, fakeDim11); AllAngle Composite Snow Free Num: FillValue = -1s; AllAngle Composite Snow Free Num:long name = "Number of Observations of Temporal Radiance Composite Using All Observations During Snow-free Period"; AllAngle Composite Snow Free Num:units = "number of observations": AllAngle Composite Snow Free Num:valid range = 0s, -2s; AllAngle Composite Snow Free Num:scale factor = 1.; AllAngle Composite Snow Free Num:offset = 0.; AllAngle Composite Snow Free Num:coordinates = "latitude longitude"; byte AllAngle Composite Snow Free Quality(fakeDim12, fakeDim13); AllAngle Composite Snow Free Quality: FillValue = '\377'; AllAngle Composite Snow Free Quality:long name = "Quality Flag of Temporal Radiance Composite Using All Observations During Snow-free Period"; AllAngle Composite Snow Free Quality:units = "quality flag, no units"; AllAngle Composite Snow Free Quality:valid range = '\0', '\376'; AllAngle Composite Snow Free Quality:scale factor = 1.; AllAngle Composite Snow Free Quality:offset = 0.; AllAngle Composite Snow Free Quality: Description = "Quality:\n", "\t 0 = Good quality \n", "\t 1 = Poor quality \n", "\t 2 = \text{Gap filled} \setminus n", "\t 255 = \text{Fill value} \text{ n}", "\t": AllAngle Composite Snow Free Quality:coordinates = "latitude longitude"; short AllAngle Composite Snow Free Std(fakeDim14. fakeDim15): AllAngle Composite Snow Free Std: FillValue = -1s; AllAngle Composite Snow Free Std:long name = "Standard Deviation of Temporal Radiance Composite Using All Observations During Snow-free Period"; ``` ``` AllAngle Composite Snow Free Std:units = "nWatts/(cm^2 sr)"; AllAngle Composite Snow Free Std:valid range = 0s, -2s; AllAngle Composite Snow Free Std:scale factor = 0.1; AllAngle Composite Snow Free Std:offset = 0.; AllAngle Composite Snow Free Std:coordinates = "latitude longitude"; byte DNB Platform(fakeDim16, fakeDim17); DNB Platform: FillValue = '\377'; DNB Platform:long name = "Platform"; DNB Platform:units = "platform, no units"; DNB Platform:valid range = '\0', '\376'; DNB Platform:scale factor = 1.; DNB Platform:offset = 0.; DNB Platform:Description = "Platform:\n", "\t 0 = \text{Suomi-NPP} \setminus n", "\t 1 = NOAA-20 \n", "\t 2 = Suomi-NPP and NOAA-20 combined \n", "\t"; DNB Platform:coordinates = "latitude longitude"; byte Land Water Mask(fakeDim18, fakeDim19); Land Water Mask: FillValue = '\377'; Land Water Mask:long name = "Land Water Mask"; Land Water Mask:units = "land water mask, no units"; Land Water Mask:valid range = 10', 376'; Land Water Mask:scale factor = 1.; Land Water Mask:offset = 0.; Land Water Mask:Description = "Land/Water:\n", "\t 0 = \text{Land \& Desert } \n", "\t 1 = \text{Land no Desert } \n". "\t 2 = \text{Inland Water } \n". "\t 3 = \text{Sea Water } \n", "\t 5 = \text{Coastal } n", "\t"; Land Water Mask:coordinates = "latitude longitude"; short NearNadir Composite Snow Covered(fakeDim20, fakeDim21): NearNadir Composite Snow Covered: FillValue = -1s; NearNadir Composite Snow Covered:long name = "Temporal Radiance Composite Using Nadir Angle Observations (View Zenith Angle 0-20 degree) During Snow-covered Period"; NearNadir Composite Snow Covered:units = "nWatts/(cm^2 sr)": NearNadir Composite Snow Covered:valid range = 0s, -2s; NearNadir Composite Snow Covered:scale factor = 0.1; NearNadir Composite Snow Covered:offset = 0.; NearNadir Composite Snow Covered:coordinates = "latitude longitude"; short NearNadir Composite Snow Covered Num(fakeDim22, fakeDim23); NearNadir
Composite Snow Covered Num: FillValue = -1s; NearNadir Composite Snow Covered Num:long name = "Number of Observations of Temporal Radiance Composite Using Nadir Angle Observations (View Zenith Angle 0-20 degree) During Snow-covered Period"; NearNadir Composite Snow Covered Num:units = "number of observations"; NearNadir Composite Snow Covered Num:valid range = 0s, -2s; NearNadir Composite Snow Covered Num:scale factor = 1.; NearNadir Composite Snow Covered Num:offset = 0.; ``` ``` NearNadir Composite Snow Covered Num:coordinates = "latitude longitude"; byte NearNadir Composite Snow Covered Quality(fakeDim24, fakeDim25); NearNadir Composite Snow Covered Quality: FillValue = \\377'; NearNadir Composite Snow Covered Quality:long name = "Quality Flag of Temporal Radiance Composite Using Nadir Angle Observations (View Zenith Angle 0-20 degree) During Snow- covered Period"; NearNadir Composite Snow Covered Quality:units = "quality flag, no units"; NearNadir Composite Snow Covered Quality:valid range = '\0', '\376'; NearNadir Composite Snow Covered Quality:scale factor = 1.; NearNadir Composite Snow Covered Quality:offset = 0.; NearNadir Composite Snow Covered Quality:Description = "Quality:\n", "\t 0 = Good quality \n", "\t 1 = Poor quality\n", "\t 2 = \text{Gap filled} \setminus n", "\t 255 = \text{Fill value} \text{n}". "\t"; NearNadir Composite Snow Covered Quality:coordinates = "latitude longitude"; short NearNadir Composite Snow Covered Std(fakeDim26, fakeDim27); NearNadir_Composite Snow Covered Std: FillValue = -1s: NearNadir Composite Snow Covered Std:long name = "Standard Deviation of Temporal Radiance Composite Using Nadir Angle Observations (View Zenith Angle 0-20 degree) During Snow- covered Period"; NearNadir Composite Snow Covered Std:units = "nWatts/(cm^2 sr)"; NearNadir Composite Snow Covered Std:valid range = 0s, -2s; NearNadir Composite Snow Covered Std:scale factor = 0.1; NearNadir Composite Snow Covered Std:offset = 0.; NearNadir Composite Snow Covered Std:coordinates = "latitude longitude"; short NearNadir Composite Snow Free(fakeDim28, fakeDim29); NearNadir Composite Snow Free: FillValue = -1s; NearNadir Composite Snow Free:long name = "Temporal Radiance Composite Using Nadir Angle Observations (View Zenith Angle 0-20 degree) During Snow-free Period"; NearNadir Composite Snow Free:units = "nWatts/(cm² sr)"; NearNadir Composite Snow Free:valid range = 0s, -2s; NearNadir Composite Snow Free:scale factor = 0.1; NearNadir Composite Snow Free:offset = 0.; NearNadir Composite Snow Free:coordinates = "latitude longitude"; short NearNadir Composite Snow Free Num(fakeDim30, fakeDim31); NearNadir Composite Snow Free Num: FillValue = -1s: NearNadir Composite Snow Free Num:long name = "Number of Observations of Temporal Radiance Composite Using Nadir Angle Observations (View Zenith Angle 0-20 degree) During Snow- free Period"; NearNadir Composite Snow Free Num:units = "number of observations"; NearNadir Composite Snow Free Num:valid range = 0s, -2s; NearNadir Composite Snow Free Num:scale factor = 1.; NearNadir Composite Snow Free Num:offset = 0.; NearNadir Composite Snow Free Num:coordinates = "latitude longitude"; byte NearNadir Composite Snow Free Quality(fakeDim32, fakeDim33); NearNadir Composite Snow Free Quality: FillValue = '\377'; NearNadir Composite Snow Free Quality:long name = "Quality Flag of Temporal Radiance Composite Using Nadir Angle Observations (View Zenith Angle 0-20 degree) During Snow-free Period" ``` ``` NearNadir Composite Snow Free Quality:units = "quality flag, no units"; NearNadir Composite Snow Free Quality:valid range = '\0', \'376'; NearNadir Composite Snow Free Quality:scale factor = 1.; NearNadir Composite Snow Free Quality:offset = 0.; NearNadir Composite Snow Free Quality:Description = "Quality:\n", "\t 0 = Good quality \n", "\t 1 = Poor quality \n", "\t 2 = \text{Gap filled} \setminus n", "\t 255 = \text{Fill value} \text{n}", "\t"; NearNadir Composite Snow Free Quality:coordinates = "latitude longitude"; short NearNadir Composite Snow Free Std(fakeDim34, fakeDim35); NearNadir Composite Snow Free Std: FillValue = -1s; NearNadir Composite Snow Free Std:long name = "Standard Deviation of Temporal Radiance Composite Using Nadir Angle Observations (View Zenith Angle 0-20 degree) During Snow- free Period"; NearNadir Composite Snow Free Std:units = "nWatts/(cm^2 sr)"; NearNadir Composite Snow Free Std:valid range = 0s, -2s; NearNadir Composite Snow Free Std:scale factor = 0.1; NearNadir Composite Snow Free Std:offset = 0.; NearNadir Composite Snow Free Std:coordinates = "latitude longitude"; short OffNadir Composite Snow Covered(fakeDim36, fakeDim37); OffNadir Composite Snow Covered: FillValue = -1s; OffNadir Composite Snow Covered:long name = "Temporal Radiance Composite Using Off Nadir Angle Observations (View Zenith Angle 40-60 degree) During Snow-covered Period"; OffNadir Composite Snow Covered:units = "nWatts/(cm^2 sr)"; OffNadir Composite Snow Covered:valid range = 0s, -2s; OffNadir Composite Snow Covered:scale factor = 0.1: OffNadir Composite Snow Covered:offset = 0.; OffNadir Composite Snow Covered:coordinates = "latitude longitude"; short OffNadir Composite Snow Covered Num(fakeDim38, fakeDim39); OffNadir Composite Snow Covered Num: FillValue = -1s; OffNadir Composite Snow Covered Num:long name = "Number of Observations of Temporal Radiance Composite Using Off Nadir Angle Observations (View Zenith Angle 40-60 degree) During Snow-covered Period"; OffNadir Composite Snow Covered Num:units = "number of observations"; OffNadir Composite Snow Covered Num:valid range = 0s, -2s; OffNadir Composite Snow Covered Num:scale factor = 1.: OffNadir Composite Snow Covered Num:offset = 0.; OffNadir Composite Snow Covered Num:coordinates = "latitude longitude"; byte OffNadir Composite Snow Covered Quality(fakeDim40, fakeDim41); OffNadir Composite Snow Covered Quality: FillValue = '\377'; OffNadir Composite Snow Covered Quality:long name = "Quality Flag of Temporal Radiance Composite Using Off Nadir Angle Observations (View Zenith Angle 40-60 degree) During Snow-covered Period"; OffNadir Composite Snow Covered Quality:units = "quality flag, no units"; OffNadir Composite Snow Covered Quality:valid range = '\0', '\376'; OffNadir Composite Snow Covered Quality:scale factor = 1.; OffNadir Composite Snow Covered Quality:offset = 0.; OffNadir Composite Snow Covered Quality:Description = "Quality:\n", "\t 0 = Good quality \n", ``` ``` "\t 1 = \text{Poor quality} \cdot \text{n}". "\t 2 = \text{Gap filled} \setminus n", "\t 255 = \text{Fill value} \text{ n}", "\t"; OffNadir Composite Snow Covered Quality:coordinates = "latitude longitude"; short OffNadir Composite Snow Covered Std(fakeDim42, fakeDim43); OffNadir Composite Snow Covered Std: FillValue = -1s; OffNadir Composite Snow Covered Std:long name = "Standard Deviation of Temporal Radiance Composite Using Off Nadir Angle Observations (View Zenith Angle 40-60 degree) During Snow-covered Period"; OffNadir Composite Snow Covered Std:units = "nWatts/(cm^2 sr)"; OffNadir Composite Snow Covered Std:valid range = 0s, -2s; OffNadir Composite Snow Covered Std:scale factor = 0.1; OffNadir Composite Snow Covered Std:offset = 0.; OffNadir Composite Snow Covered Std:coordinates = "latitude longitude": short OffNadir Composite Snow Free(fakeDim44, fakeDim45); OffNadir Composite Snow Free: FillValue = -1s; OffNadir Composite Snow Free:units = "nWatts/(cm^2 sr)"; OffNadir Composite Snow Free:long_name = "Temporal Radiance Composite Using Off Nadir Angle Observations (View Zenith Angle 40-60 degree) During Snow-free Period"; OffNadir Composite Snow Free:valid range = 0s, -2s; OffNadir Composite Snow Free:scale factor = 0.1; OffNadir Composite Snow Free:offset = 0.; OffNadir Composite Snow Free:coordinates = "latitude longitude"; short OffNadir Composite Snow Free Num(fakeDim46, fakeDim47); OffNadir Composite Snow Free Num: FillValue = -1s; OffNadir Composite Snow Free Num:long name = "Number of Observations of Temporal Radiance Composite Using Off Nadir Angle Observations (View Zenith Angle 40-60 degree) During Snow-free Period"; OffNadir Composite Snow Free Num:units = "number of observations"; OffNadir Composite Snow Free Num:valid range = 0s, -2s; OffNadir Composite Snow Free Num:scale factor = 1.; OffNadir Composite Snow Free Num:offset = 0.; OffNadir Composite Snow Free Num:coordinates = "latitude longitude"; byte OffNadir Composite Snow Free Quality(fakeDim48, fakeDim49); OffNadir Composite Snow Free Quality: FillValue = '\377'; OffNadir Composite Snow Free Quality:long name = "Quality Flag of Temporal Radiance" Composite Using Off Nadir Angle Observations (View Zenith Angle 40-60 degree) During Snow-free Period"; OffNadir Composite Snow Free Quality:units = "quality flag, no units"; OffNadir Composite Snow Free Quality:valid range = '\0', '\376'; OffNadir Composite Snow Free Quality:scale factor = 1.; OffNadir Composite Snow Free Quality:offset = 0.; OffNadir Composite Snow Free Quality:Description = "Quality:\n", "\t 0 = Good quality \n", "\t 1 = Poor quality\n", "\t 2 = \text{Gap filled} \setminus n", "\t 255 = \text{Fill value} \text{ n}", "\t"; OffNadir Composite Snow Free Quality:coordinates = "latitude longitude"; short OffNadir Composite Snow Free Std(fakeDim50, fakeDim51); ``` ``` OffNadir Composite Snow Free Std: FillValue = -1s; OffNadir Composite Snow Free Std:long name = "Standard Deviation of Temporal Radiance Composite Using Off Nadir Angle Observations (View Zenith Angle 40-60 degree) During Snow-free Period"; OffNadir Composite Snow Free Std:units = "nWatts/(cm^2 sr)"; OffNadir Composite Snow Free Std:valid range = 0s, -2s; OffNadir Composite Snow Free Std:scale factor = 0.1; OffNadir Composite Snow Free Std:offset = 0.; OffNadir Composite Snow Free Std:coordinates = "latitude longitude"; double lat(fakeDim52); lat:long name = "latitude"; lat:units = "degrees north"; lat: CoordinateAxisType = "Lat"; double lon(fakeDim53): lon:long name
= "longitude"; lon:units = "degrees east"; lon: CoordinateAxisType = "Lon" ; ``` ### Appendix D: Metadata (Attributes) in VNP46A4 Product ``` Group size = 2 Number of attributes = 34 AlgorithmType = SCI AlgorithmVersion = NPP_PR46A3 2.0.0 Conventions = CF-1.6 DataResolution = 15 arc-second DayNightFlag = Night EndTime = 2019-01-01 00:00:00 HorizontalTileNumber = 06 InputPointer = ``` VNP46A1.A2018001.h06v05.001.2019190215825.h5, VNP46A1.A2018002.h06v05.001.2019190221624 .h5,VNP46A1.A2018003.h06v05.001.2019190235713.h5,VNP46A1.A2018004.h06v05.001.2019191003 121.h5.VNP46A1.A2018005.h06v05.001.2019191011301.h5.VNP46A1.A2018006.h06v05.001.2019191 015527.h5,VNP46A1.A2018007.h06v05.001.2019191020037.h5,VNP46A1.A2018008.h06v05.001.2019 191015700.h5, VNP46A1.A2018009.h06v05.001.2019191022307.h5, VNP46A1.A2018010.h06v05.001.2 019191024027.h5,VNP46A1.A2018011.h06v05.001.2019191030055.h5,VNP46A1.A2018012.h06v05.0 01.2019191042803.h5,VNP46A1.A2018013.h06v05.001.2019191032246.h5,VNP46A1.A2018014.h06v 05.001.2019191034428.h5, VNP46A1.A2018015.h06v05.001.2019191040210.h5, VNP46A1.A2018016.h 06v05.001.2019191040620.h5,VNP46A1.A2018017.h06v05.001.2019191043406.h5,VNP46A1.A20180 18.h06v05.001.2019191051313.h5,VNP46A1.A2018019.h06v05.001.2019191060817.h5,VNP46A1.A20 18020.h06v05.001.2019191074647.h5,VNP46A1.A2018021.h06v05.001.2019191064646.h5,VNP46A1. A2018022.h06v05.001.2019191073750.h5,VNP46A1.A2018023.h06v05.001.2019191073134.h5,VNP46 A1.A2018024.h06v05.001.2019191075007.h5,VNP46A1.A2018025.h06v05.001.2019191080832.h5,VN P46A1.A2018026.h06v05.001.2019191085235.h5,VNP46A1.A2018027.h06v05.001.2019191084459.h5, VNP46A1.A2018028.h06v05.001.2019191104258.h5,VNP46A1.A2018029.h06v05.001.2019191094055 .h5,VNP46A1.A2018030.h06v05.001.2019191115205.h5,VNP46A1.A2018031.h06v05.001.2019191110 733.h5,VNP46A1.A2018032.h06v05.001.2019191113328.h5,VNP46A1.A2018033.h06v05.001.2019191 114055.h5,VNP46A1,A2018034.h06v05.001,2019191120835.h5,VNP46A1,A2018035.h06v05.001,2019 191122617.h5,VNP46A1.A2018036.h06v05.001.2019191123313.h5,VNP46A1.A2018037.h06v05.001.2 019191132619.h5,VNP46A1.A2018038.h06v05.001.2019191134233.h5,VNP46A1.A2018039.h06v05.0 01.2019191145215.h5,VNP46A1.A2018040.h06v05.001.2019191135326.h5,VNP46A1.A2018041.h06v 05.001.2019191144409.h5, VNP46A1.A2018042.h06v05.001.2019191144206.h5, VNP46A1.A2018043.h 06v05.001.2019191155355.h5,VNP46A1.A2018044.h06v05.001.2019191165449.h5,VNP46A1.A20180 45.h06v05.001.2019191161335.h5,VNP46A1.A2018046.h06v05.001.2019191165749.h5,VNP46A1.A20 18047.h06v05.001.2019191170217.h5,VNP46A1.A2018048.h06v05.001.2019191174433.h5,VNP46A1. A2018049.h06v05.001.2019191181731.h5,VNP46A1.A2018050.h06v05.001.2019191183239.h5,VNP46 A1.A2018051.h06v05.001.2019191185254.h5,VNP46A1.A2018052.h06v05.001.2019191190409.h5,VN P46A1.A2018053.h06v05.001.2019191194043.h5, VNP46A1.A2018054.h06v05.001.2019191200110.h5, VNP46A1.A2018055.h06v05.001.2019191202556.h5,VNP46A1.A2018056.h06v05.001.2019191204200 . h5, VNP46A1. A2018057. h06v05. 001. 2019191205046. h5, VNP46A1. A2018058. h06v05. 001. 201919122011. h2018058. h06v05. h06v0713.h5,VNP46A1.A2018059.h06v05.001.2019191214959.h5,VNP46A1.A2018060.h06v05.001.2019191 220456.h5.VNP46A1.A2018061.h06v05.001.2019191224610.h5.VNP46A1.A2018062.h06v05.001.2019 191230937.h5,VNP46A1.A2018063.h06v05.001.2019191232812.h5,VNP46A1.A2018064.h06v05.001.2 019191235433.h5, VNP46A1.A2018065.h06v05.001.2019192003657.h5, VNP46A1.A2018066.h06v05.001.2019192003657.h5, VNP46A1.A201806.h06v05.001.2019192003657.h5, VNP46A1.A201806.h06v05.001.2019192003657.h5, VNP46A1.A201806.h06v05.001.4019192003657.h06v05.001.4019192003657.h06v05.001.4019192003657.h06v05.0019192003657.h06v05.001.4019192003657.h06v05.0019192003657.h06v05.0019192003657.h06v05.0019192003657.h06v05.0019192003657.h06v05.0019192003657.h06v05.0019192003657.h06v05.h06v001.2019192005211.h5,VNP46A1.A2018067.h06v05.001.2019192010944.h5,VNP46A1.A2018068.h06v 05.001.2019192014443.h5, VNP46A1.A2018069.h06v05.001.2019192031910.h5, VNP46A1.A2018070.h 06v05.001.2019192021025.h5,VNP46A1.A2018071.h06v05.001.2019192023326.h5,VNP46A1.A20180 72.h06v05.001.2019192030428.h5,VNP46A1.A2018073.h06v05.001.2019192034617.h5,VNP46A1.A20 18074.h06v05.001.2019192040155.h5,VNP46A1.A2018075.h06v05.001.2019192041804.h5,VNP46A1. A2018076.h06v05.001.2019192043801.h5,VNP46A1.A2018077.h06v05.001.2019192054435.h5,VNP46 A1.A2018078.h06v05.001.2019192072114.h5,VNP46A1.A2018079.h06v05.001.2019192062044.h5,VN P46A1.A2018080.h06v05.001.2019192071802.h5, VNP46A1.A2018081.h06v05.001.2019192070734.h5, VNP46A1.A2018082.h06v05.001.2019192073235.h5, VNP46A1.A2018083.h06v05.001.2019192081003 . h5, VNP46A1. A2018084. h06v05. 001. 2019192083315. h5, VNP46A1. A2018085. h06v05. 001. 2019192085. h06v05. h06v05.200.h5, VNP46A1.A2018086.h06v05.001.2019192090840.h5, VNP46A1.A2018087.h06v05.001.2019192 092126.h5.VNP46A1.A2018088.h06v05.001.2019192102314.h5.VNP46A1.A2018089.h06v05.001.2019 192102752.h5,VNP46A1.A2018090.h06v05.001.2019192104210.h5,VNP46A1.A2018091.h06v05.001.2 019192105854.h5,VNP46A1.A2018092.h06v05.001.2019192115402.h5,VNP46A1.A2018093.h06v05.0 01.2019192122812.h5,VNP46A1.A2018094.h06v05.001.2019192124910.h5,VNP46A1.A2018095.h06v 05.001.2019192130735.h5, VNP46A1.A2018096.h06v05.001.2019192132928.h5, VNP46A1.A2018097.h 06v05.001.2019192144522.h5,VNP46A1.A2018098.h06v05.001.2019192144906.h5,VNP46A1.A20180 99.h06v05.001.2019192143904.h5,VNP46A1.A2018100.h06v05.001.2019192170456.h5,VNP46A1.A20 18101.h06v05.001.2019192154357.h5,VNP46A1.A2018102.h06v05.001.2019192162235.h5,VNP46A1. A2018103.h06v05.001.2019192165043.h5,VNP46A1.A2018104.h06v05.001.2019192171022.h5,VNP46 A1.A2018105.h06v05.001.2019193143210.h5.VNP46A1.A2018106.h06v05.001.2019193143116.h5.VN P46A1.A2018107.h06v05.001.2019193143201.h5,VNP46A1.A2018108.h06v05.001.2019193145737.h5, VNP46A1.A2018109.h06v05.001.2019193145349.h5, VNP46A1.A2018110.h06v05.001.2019193150435 .h5,VNP46A1.A2018111.h06v05.001.2019193151001.h5,VNP46A1.A2018112.h06v05.001.2019193151 626.h5, VNP46A1.A2018113.h06v05.001.2019193152431.h5, VNP46A1.A2018114.h06v05.001.2019193 153041.h5,VNP46A1.A2018115.h06v05.001.2019193152532.h5,VNP46A1.A2018116.h06v05.001.2019 193154115.h5,VNP46A1.A2018117.h06v05.001.2019193155522.h5,VNP46A1.A2018118.h06v05.001.2 019193155732.h5,VNP46A1.A2018119.h06v05.001.2019193160812.h5,VNP46A1.A2018120.h06v05.0 01.2019193160550.h5,VNP46A1.A2018121.h06v05.001.2019193180047.h5,VNP46A1.A2018122.h06v 05.001.2019193173950.h5,VNP46A1.A2018123.h06v05.001.2019193180111.h5,VNP46A1.A2018124.h 06v05.001.2019193183022.h5,VNP46A1.A2018125.h06v05.001.2019193191935.h5,VNP46A1.A20181 26.h06v05.001.2019193182156.h5,VNP46A1.A2018127.h06v05.001.2019193185645.h5,VNP46A1.A20 18128.h06v05.001.2019193185136.h5,VNP46A1.A2018129.h06v05.001.2019193233056.h5,VNP46A1. A2018130.h06v05.001.2019193235053.h5,VNP46A1.A2018131.h06v05.001.2019194001200.h5,VNP46 A1.A2018132.h06v05.001.2019194003543.h5.VNP46A1.A2018133.h06v05.001.2019194020731.h5.VN P46A1.A2018134.h06v05.001.2019194011758.h5,VNP46A1.A2018135.h06v05.001.2019194011044.h5, VNP46A1.A2018136.h06v05.001.2019194015945.h5, VNP46A1.A2018137.h06v05.001.2019194015809 .h5,VNP46A1.A2018138.h06v05.001.2019194015947.h5,VNP46A1.A2018139.h06v05.001.2019194020 922.h5,VNP46A1.A2018140.h06v05.001.2019194040206.h5,VNP46A1.A2018141.h06v05.001.2019194 035855.h5,VNP46A1.A2018142.h06v05.001.2019194025328.h5,VNP46A1.A2018143.h06v05.001.2019 194034030.h5,VNP46A1.A2018144.h06v05.001.2019194044432.h5,VNP46A1.A2018145.h06v05.001.2 019194052555.h5,VNP46A1.A2018146.h06v05.001.2019194064138.h5,VNP46A1.A2018147.h06v05.0 01.2019194072441.h5, VNP46A1.A2018148.h06v05.001.2019194061448.h5, VNP46A1.A2018149.h06v05.001.2019194061448.h5, VNP46A1.A2018149.h06v05.001.4019194061448.h5, VNP46A1.A2018149.h06v05.001.4019194061448.h5, VNP46A1.A2018149.h06v05.001.4019194061448.h06v05.001.4019194061448.h06v05.001.4019194061448.h06v05.0019194061448.h06v05.h06v005.001.2019194063543.h5, VNP46A1.A2018150.h06v05.001.2019194071059.h5, VNP46A1.A2018151.h 06v05.001.2019194070518.h5, VNP46A1.A2018152.h06v05.001.2019194072735.h5, VNP46A1.A20181
53.h06v05.001.2019194084959.h5,VNP46A1.A2018154.h06v05.001.2019194075819.h5,VNP46A1.A20 18155.h06v05.001.2019194082837.h5,VNP46A1.A2018156.h06v05.001.2019194092355.h5,VNP46A1. A2018157.h06v05.001.2019194090015.h5,VNP46A1.A2018158.h06v05.001.2019194100951.h5,VNP46 A1.A2018159.h06v05.001.2019194101332.h5.VNP46A1.A2018160.h06v05.001.2019194100413.h5.VN P46A1.A2018161.h06v05.001.2019194103918.h5, VNP46A1.A2018162.h06v05.001.2019194105521.h5, VNP46A1.A2018163.h06v05.001.2019194115827.h5, VNP46A1.A2018164.h06v05.001.2019194114436 .h5,VNP46A1.A2018165.h06v05.001.2019194123821.h5,VNP46A1.A2018166.h06v05.001.2019194122 101.h5, VNP46A1.A2018167.h06v05.001.2019194122510.h5, VNP46A1.A2018168.h06v05.001.2019194 125114.h5,VNP46A1.A2018169.h06v05.001.2019194130326.h5,VNP46A1.A2018170.h06v05.001.2019 194132352.h5,VNP46A1.A2018171.h06v05.001.2019194140449.h5,VNP46A1.A2018172.h06v05.001.2 019194144019.h5,VNP46A1.A2018173.h06v05.001.2019194154150.h5,VNP46A1.A2018174.h06v05.0 01.2019194145845.h5,VNP46A1.A2018175.h06v05.001.2019194151032.h5,VNP46A1.A2018176.h06v 05.001.2019194153005.h5, VNP46A1.A2018177.h06v05.001.2019194164417.h5, VNP46A1.A2018178.h 06v05.001.2019194172727.h5,VNP46A1.A2018179.h06v05.001.2019194165138.h5,VNP46A1.A20181 80.h06v05.001.2019194171259.h5,VNP46A1.A2018181.h06v05.001.2019194174902.h5,VNP46A1.A20 18182.h06v05.001.2019194180841.h5,VNP46A1.A2018183.h06v05.001.2019194193646.h5,VNP46A1. A2018184.h06v05.001.2019194184433.h5,VNP46A1.A2018185.h06v05.001.2019194193216.h5,VNP46 A1.A2018186.h06v05.001.2019194192910.h5.VNP46A1.A2018187.h06v05.001.2019194201314.h5.VN P46A1.A2018188.h06v05.001.2019194204007.h5, VNP46A1.A2018189.h06v05.001.2019194205610.h5, VNP46A1.A2018190.h06v05.001.2019194210836.h5, VNP46A1.A2018191.h06v05.001.2019194214016 .h5,VNP46A1.A2018192.h06v05.001.2019194215926.h5,VNP46A1.A2018193.h06v05.001.2019194225 222.h5,VNP46A1.A2018194.h06v05.001.2019194225425.h5,VNP46A1.A2018195.h06v05.001.2019194 231815.h5,VNP46A1.A2018196.h06v05.001.2019194232434.h5,VNP46A1.A2018197.h06v05.001.2019 194234549.h5,VNP46A1.A2018198.h06v05.001.2019195000500.h5,VNP46A1.A2018199.h06v05.001.2 019195005010.h5,VNP46A1.A2018200.h06v05.001.2019195005953.h5,VNP46A1.A2018201.h06v05.0 01.2019195022017.h5,VNP46A1.A2018202.h06v05.001.2019195013145.h5,VNP46A1.A2018203.h06v 05.001.2019195015640.h5.VNP46A1.A2018204.h06v05.001.2019195023109.h5.VNP46A1.A2018205.h 06v05.001.2019196140441.h5,VNP46A1.A2018206.h06v05.001.2019196163318.h5,VNP46A1.A20182 07.h06v05.001.2019196171208.h5, VNP46A1.A2018208.h06v05.001.2019196171354.h5, VNP46A1.A2018208.h06v05.001.4019196171354.h5, VNP46A1.A2018208.h06v05.001.4019196171354.h5, VNP46A1.A2018208.h06v05.001.4019196171354.h5, VNP46A1.A2018208.h06v05.001.4019196171354.h5, VNP46A1.A2018208.h06v05.0019196171354.h5, VNP46A1.A2018208.h06v05.001.401961.h06v05.18209.h06v05.001.2019196172238.h5,VNP46A1.A2018210.h06v05.001.2019196181758.h5,VNP46A1. A2018211.h06v05.001.2019196185014.h5,VNP46A1.A2018212.h06v05.001.2019196185126.h5,VNP46 A1.A2018213.h06v05.001.2019196193613.h5,VNP46A1.A2018214.h06v05.001.2019196211413.h5,VN P46A1.A2018215.h06v05.001.2019196214348.h5, VNP46A1.A2018216.h06v05.001.2019196224513.h5, VNP46A1.A2018217.h06v05.001.2019196230431.h5, VNP46A1.A2018218.h06v05.001.2019196232523 .h5,VNP46A1.A2018219.h06v05.001.2019196233832.h5,VNP46A1.A2018220.h06v05.001.2019196235 253.h5,VNP46A1.A2018221.h06v05.001.2019197001646.h5,VNP46A1.A2018222.h06v05.001.2019197 001616.h5,VNP46A1.A2018223.h06v05.001.2019197003444.h5,VNP46A1.A2018224.h06v05.001.2019 197004327.h5,VNP46A1.A2018225.h06v05.001.2019197005105.h5,VNP46A1.A2018226.h06v05.001.2 019197010614.h5,VNP46A1.A2018227.h06v05.001.2019197013215.h5,VNP46A1.A2018228.h06v05.0 01.2019197012825.h5,VNP46A1.A2018229.h06v05.001.2019197031135.h5,VNP46A1.A2018230.h06v 05.001.2019197031455.h5.VNP46A1.A2018231.h06v05.001.2019197032029.h5.VNP46A1.A2018232.h 06v05.001.2019197032950.h5,VNP46A1.A2018233.h06v05.001.2019197033602.h5,VNP46A1.A20182 34.h06v05.001.2019197033833.h5,VNP46A1.A2018235.h06v05.001.2019197034907.h5,VNP46A1.A20 18236.h06v05.001.2019197040250.h5,VNP46A1.A2018237.h06v05.001.2019197041057.h5,VNP46A1. A2018238.h06v05.001.2019197041357.h5,VNP46A1.A2018239.h06v05.001.2019197042554.h5,VNP46 A1.A2018240.h06v05.001.2019197043016.h5,VNP46A1.A2018241.h06v05.001.2019197043501.h5,VN P46A1.A2018242.h06v05.001.2019197045643.h5,VNP46A1.A2018243.h06v05.001.2019197050800.h5, VNP46A1.A2018244.h06v05.001.2019197054744.h5, VNP46A1.A2018245.h06v05.001.2019197062621 .h5,VNP46A1.A2018246.h06v05.001.2019197063658.h5,VNP46A1.A2018247.h06v05.001.2019197064 918.h5, VNP46A1.A2018248.h06v05.001.2019197065311.h5, VNP46A1.A2018249.h06v05.001.2019197 071237.h5,VNP46A1.A2018250.h06v05.001.2019197030318.h5,VNP46A1.A2018251.h06v05.001.2019 197071815.h5,VNP46A1.A2018252.h06v05.001.2019197073805.h5,VNP46A1.A2018253.h06v05.001.2 01.2019197075825.h5.VNP46A1.A2018256.h06v05.001.2019197080632.h5.VNP46A1.A2018257.h06v 05.001.2019197081527.h5.VNP46A1.A2018258.h06v05.001.2019197084309.h5.VNP46A1.A2018259.h 06v05.001.2019197085129.h5,VNP46A1.A2018260.h06v05.001.2019197091218.h5,VNP46A1.A20182 18263.h06v05.001.2019197101417.h5,VNP46A1.A2018264.h06v05.001.2019197101907.h5,VNP46A1. A2018265.h06v05.001.2019197103734.h5,VNP46A1.A2018266.h06v05.001.2019197110215.h5,VNP46 A1.A2018267.h06v05.001.2019197105610.h5,VNP46A1.A2018268.h06v05.001.2019197110400.h5,VN P46A1.A2018269.h06v05.001.2019197111227.h5, VNP46A1.A2018270.h06v05.001.2019196140232.h5, VNP46A1.A2018271.h06v05.001.2019196141136.h5, VNP46A1.A2018272.h06v05.001.2019196142805 .h5,VNP46A1.A2018273.h06v05.001.2019196142758.h5,VNP46A1.A2018274.h06v05.001.2019196145 540.h5, VNP46A1.A2018275.h06v05.001.2019196150613.h5, VNP46A1.A2018276.h06v05.001.2019196 150458.h5,VNP46A1.A2018277.h06v05.001.2019196152303.h5,VNP46A1.A2018278.h06v05.001.2019 196155355.h5,VNP46A1.A2018279.h06v05.001.2019196154743.h5,VNP46A1.A2018280.h06v05.001.2 019196155111.h5, VNP46A1.A2018281.h06v05.001.2019196161748.h5, VNP46A1.A2018282.h06v05.001.4019196161748.h5, VNP46A1.A2018282.h06v05.001.4019196161748.h06v05.001.4019196161748.h06v05.0019196161748.h06v05.001.2019196232501.h5.VNP46A1.A2018285.h06v05.001.2019197014635.h5.VNP46A1.A2018286.h 06v05.001.2019197123642.h5,VNP46A1.A2018287.h06v05.001.2019197125242.h5,VNP46A1.A20182 88.h06v05.001.2019197131813.h5,VNP46A1.A2018289.h06v05.001.2019197131547.h5,VNP46A1.A20 18290.h06v05.001.2019197134329.h5,VNP46A1.A2018291.h06v05.001.2019197133547.h5,VNP46A1. A2018292.h06v05.001.2019197133733.h5,VNP46A1.A2018293.h06v05.001.2019197134344.h5,VNP46 A1.A2018294.h06v05.001.2019197135411.h5,VNP46A1.A2018295.h06v05.001.2019197140308.h5,VN P46A1.A2018296.h06v05.001.2019197141312.h5, VNP46A1.A2018297.h06v05.001.2019197181618.h5, VNP46A1.A2018298.h06v05.001.2019197205257.h5, VNP46A1.A2018299.h06v05.001.2019197144907 .h5,VNP46A1.A2018300.h06v05.001.2019197150602.h5,VNP46A1.A2018301.h06v05.001.2019197153 147.h5.VNP46A1.A2018302.h06v05.001.2019197155832.h5.VNP46A1.A2018303.h06v05.001.2019197 175113.h5,VNP46A1.A2018304.h06v05.001.2019197215652.h5,VNP46A1.A2018305.h06v05.001.2019 197214609.h5,VNP46A1.A2018306.h06v05.001.2019197234011.h5,VNP46A1.A2018307.h06v05.001.2 019197224554.h5,VNP46A1.A2018308.h06v05.001.2019197231114.h5,VNP46A1.A2018309.h06v05.0 01.2019197231709.h5,VNP46A1.A2018310.h06v05.001.2019197233024.h5,VNP46A1.A2018311.h06v 05.001.2019197235255.h5, VNP46A1.A2018312.h06v05.001.2019197234644.h5, VNP46A1.A2018313.h 06v05.001.2019198045638.h5,VNP46A1.A2018314.h06v05.001.2019198045601.h5,VNP46A1.A20183 15.h06v05.001.2019198050654.h5,VNP46A1.A2018316.h06v05.001.2019198053138.h5,VNP46A1.A20 18317.h06v05.001.2019198054642.h5,VNP46A1.A2018318.h06v05.001.2019198055626.h5,VNP46A1. A2018319.h06v05.001.2019198060829.h5,VNP46A1.A2018320.h06v05.001.2019198061953.h5,VNP46 A1.A2018321.h06v05.001.2019198063321.h5,VNP46A1.A2018322.h06v05.001.2019198061229.h5,VN P46A1.A2018323.h06v05.001.2019199190811.h5,VNP46A1.A2018324.h06v05.001.2019198063742.h5,
VNP46A1.A2018325.h06v05.001.2019198090838.h5, VNP46A1.A2018326.h06v05.001.2019198075356 .h5,VNP46A1.A2018327.h06v05.001.2019198083747.h5,VNP46A1.A2018328.h06v05.001.2019198083 245.h5.VNP46A1.A2018329.h06v05.001.2019198101831.h5.VNP46A1.A2018330.h06v05.001.2019198 112922.h5,VNP46A1.A2018331.h06v05.001.2019198150746.h5,VNP46A1.A2018332.h06v05.001.2019 198173824.h5,VNP46A1.A2018333.h06v05.001.2019198164627.h5,VNP46A1.A2018334.h06v05.001.2 019198203120.h5,VNP46A1.A2018335.h06v05.001.2019198215614.h5,VNP46A1.A2018336.h06v05.0 01.2019198214847.h5,VNP46A1.A2018337.h06v05.001.2019198201822.h5,VNP46A1.A2018338.h06v 05.001.2019198210955.h5, VNP46A1.A2018339.h06v05.001.2019198221413.h5, VNP46A1.A2018340.h 06v05.001.2019198221913.h5,VNP46A1.A2018341.h06v05.001.2019198222907.h5,VNP46A1.A20183 42.h06v05.001.2019199004930.h5, VNP46A1.A2018343.h06v05.001.2019199003607.h5, VNP46A1.A20 18344.h06v05.001.2019199030955.h5,VNP46A1.A2018345.h06v05.001.2019199055542.h5,VNP46A1. A2018346.h06v05.001.2019199081856.h5,VNP46A1.A2018347.h06v05.001.2019199105830.h5,VNP46 A1.A2018348.h06v05.001.2019199112700.h5,VNP46A1.A2018349.h06v05.001.2019199120411.h5,VN P46A1.A2018350.h06v05.001.2019199151309.h5, VNP46A1.A2018351.h06v05.001.2019199121100.h5, VNP46A1.A2018352.h06v05.001.2019200034407.h5, VNP46A1.A2018353.h06v05.001.2019199125603 .h5,VNP46A1.A2018354.h06v05.001.2019199190931.h5,VNP46A1.A2018355.h06v05.001.2019199162 532.h5.VNP46A1.A2018356.h06v05.001.2019199164027.h5.VNP46A1.A2018357.h06v05.001.2019199 175121.h5,VNP46A1.A2018358.h06v05.001.2019199223632.h5,VNP46A1.A2018359.h06v05.001.2019 200022613.h5,VNP46A1.A2018360.h06v05.001.2019200024941.h5,VNP46A1.A2018361.h06v05.001.2 019200031850.h5,VNP46A1.A2018362.h06v05.001.2019200032542.h5,VNP46A1.A2018363.h06v05.0 01.2019200040016.h5,VNP46A1.A2018364.h06v05.001.2019200064520.h5,VNP46A1.A2018365.h06v 05.001.2019200063057.h5, VNP46A2.A2018001.h06v05.001.2020332160947.h5, VNP46A2.A2018002.h 06v05.001.2020332192229.h5.VNP46A2.A2018003.h06v05.001.2020332213958.h5.VNP46A2.A20180 04.h06v05.001.2020332224931.h5,VNP46A2.A2018005.h06v05.001.2020332235151.h5,VNP46A2.A20 18006.h06v05.001.2020333004326.h5,VNP46A2.A2018007.h06v05.001.2020333014654.h5,VNP46A2. A2018008.h06v05.001.2020333024147.h5,VNP46A2.A2018009.h06v05.001.2020333033718.h5,VNP46 A2.A2018010.h06v05.001.2020333042912.h5,VNP46A2.A2018011.h06v05.001.2020333061425.h5,VN P46A2.A2018012.h06v05.001.2020333070707.h5, VNP46A2.A2018013.h06v05.001.2020333075938.h5, VNP46A2.A2018014.h06v05.001.2020333085225.h5,VNP46A2.A2018015.h06v05.001.2020333095048 .h5,VNP46A2.A2018016.h06v05.001.2020333103731.h5,VNP46A2.A2018017.h06v05.001.2020333113 031.h5,VNP46A2,A2018018.h06v05.001.2020333122554.h5,VNP46A2,A2018019.h06v05.001.2020333 132028.h5, VNP46A2.A2018020.h06v05.001.2020333141320.h5, VNP46A2.A2018021.h06v05.001.20201.h06v05.001.h06v05.001.h06v05.001.h06v05.001.h06v05.001.h06v05.001.h06v05.001.h06v05.001.h06v05.001.h06v05.001.h06v05.001.h06v05.001.h06v05.001.h06v05.h06v333150715.h5,VNP46A2.A2018022.h06v05.001.2020333154907.h5,VNP46A2.A2018023.h06v05.001.2 020333162921.h5,VNP46A2.A2018024.h06v05.001.2020333171526.h5,VNP46A2.A2018025.h06v05.0 01.2020333180233.h5,VNP46A2.A2018026.h06v05.001.2020333184811.h5,VNP46A2.A2018027.h06v 05.001.2020333192900.h5, VNP46A2.A2018028.h06v05.001.2020333202002.h5, VNP46A2.A2018029.h 06v05.001.2020333210953.h5,VNP46A2.A2018030.h06v05.001.2020333221020.h5,VNP46A2.A20180 31.h06v05.001.2020333225556.h5,VNP46A2.A2018032.h06v05.001.2020333233836.h5,VNP46A2.A20 18033.h06v05.001.2020334001843.h5,VNP46A2.A2018034.h06v05.001.2020334010432.h5,VNP46A2. A2018035.h06v05.001.2020334020444.h5,VNP46A2.A2018036.h06v05.001.2020334030036.h5,VNP46 A2.A2018037.h06v05.001.2020334034901.h5,VNP46A2.A2018038.h06v05.001.2020334043515.h5,VN P46A2.A2018039.h06v05.001.2020334054631.h5, VNP46A2.A2018040.h06v05.001.2020334062913.h5, VNP46A2.A2018041.h06v05.001.2020334071536.h5, VNP46A2.A2018042.h06v05.001.2020334080420 .h5,VNP46A2.A2018043.h06v05.001.2020334085529.h5,VNP46A2.A2018044.h06v05.001.2020334094 852.h5, VNP46A2.A2018045.h06v05.001.2020334104415.h5, VNP46A2.A2018046.h06v05.001.2020334 114230.h5,VNP46A2.A2018047.h06v05.001.2020334122736.h5,VNP46A2.A2018048.h06v05.001.2020 334131500.h5, VNP46A2.A2018049.h06v05.001.2020334140337.h5, VNP46A2.A2018050.h06v05.001.2 020334145517.h5,VNP46A2.A2018051.h06v05.001.2020334155100.h5,VNP46A2.A2018052.h06v05.0 01.2020334164619.h5, VNP46A2.A2018053.h06v05.001.2020334172241.h5, VNP46A2.A2018054.h06v05.001.2020334172241.h5, VNP46A2.A2018054.h06v05.001.402034.h06v05.001.402034.h06v05.001.402034.h06v05.001.402034.h06v05.001.402034.h06v05.001.402034.h06v05.001.402034.h06v05.001.h06v05.h05.001.2020334180221.h5, VNP46A2.A2018055.h06v05.001.2020334184051.h5, VNP46A2.A2018056.h 06v05.001.2020334193909.h5,VNP46A2.A2018057.h06v05.001.2020334204209.h5,VNP46A2.A20180 58.h06v05.001.2020334214222.h5,VNP46A2.A2018059.h06v05.001.2020334224213.h5,VNP46A2.A20 18060.h06v05.001.2020334234216.h5,VNP46A2.A2018061.h06v05.001.2020335002929.h5,VNP46A2. A2018062.h06v05.001.2020335014329.h5,VNP46A2.A2018063.h06v05.001.2020335024635.h5,VNP46 A2.A2018064.h06v05.001.2020335035506.h5,VNP46A2.A2018065.h06v05.001.2020335044907.h5,VN P46A2.A2018066.h06v05.001.2020335053852.h5,VNP46A2.A2018067.h06v05.001.2020335064416.h5, VNP46A2.A2018068.h06v05.001.2020335074423.h5, VNP46A2.A2018069.h06v05.001.2020335083022 .h5,VNP46A2.A2018070.h06v05.001.2020335091656.h5,VNP46A2.A2018071.h06v05.001.2020335100 010.h5, VNP46A2.A2018072.h06v05.001.2020335104357.h5, VNP46A2.A2018073.h06v05.001.2020335 113311.h5,VNP46A2.A2018074.h06v05.001.2020335122028.h5,VNP46A2.A2018075.h06v05.001.2020 335130217.h5,VNP46A2.A2018076.h06v05.001.2020335135131.h5,VNP46A2.A2018077.h06v05.001.2 020335143744.h5,VNP46A2.A2018078.h06v05.001.2020335152349.h5,VNP46A2.A2018079.h06v05.0 01.2020335161054.h5,VNP46A2.A2018080.h06v05.001.2020335171610.h5,VNP46A2.A2018081.h06v 05.001.2020335182031.h5, VNP46A2.A2018082.h06v05.001.2020335190523.h5, VNP46A2.A2018083.h 06v05.001.2020335194834.h5,VNP46A2.A2018084.h06v05.001.2020335202921.h5,VNP46A2.A20180 85.h06v05.001.2020335210712.h5,VNP46A2.A2018086.h06v05.001.2020335220539.h5,VNP46A2.A20 18087.h06v05.001.2020335230401.h5,VNP46A2.A2018088.h06v05.001.2020335235958.h5,VNP46A2. A2018089.h06v05.001.2020336005748.h5,VNP46A2.A2018090.h06v05.001.2020336015548.h5,VNP46 A2.A2018091.h06v05.001.2020336030829.h5,VNP46A2.A2018092.h06v05.001.2020336040531.h5,VN P46A2.A2018093.h06v05.001.2020336050910.h5,VNP46A2.A2018094.h06v05.001.2020336062634.h5, VNP46A2.A2018095.h06v05.001.2020336074344.h5, VNP46A2.A2018096.h06v05.001.2020336090107 .h5,VNP46A2.A2018097.h06v05.001.2020336095919.h5,VNP46A2.A2018098.h06v05.001.2020336111 749.h5, VNP46A2.A2018099.h06v05.001.2020336121652.h5, VNP46A2.A2018100.h06v05.001.2020337 053818.h5.VNP46A2.A2018101.h06v05.001.2020337064626.h5.VNP46A2.A2018102.h06v05.001.2020
337073736.h5,VNP46A2.A2018103.h06v05.001.2020337083806.h5,VNP46A2.A2018104.h06v05.001.2 020337092818.h5,VNP46A2.A2018105.h06v05.001.2020337101725.h5,VNP46A2.A2018106.h06v05.0 01.2020337111718.h5,VNP46A2.A2018107.h06v05.001.2020337120302.h5,VNP46A2.A2018108.h06v 05.001.2020337124101.h5, VNP46A2.A2018109.h06v05.001.2020337134037.h5, VNP46A2.A2018110.h 06v05.001.2020337142020.h5,VNP46A2.A2018111.h06v05.001.2020337150937.h5,VNP46A2.A20181 12.h06v05.001.2020337161628.h5,VNP46A2.A2018113.h06v05.001.2020337170332.h5,VNP46A2.A20 18114.h06v05.001.2020337175021.h5,VNP46A2.A2018115.h06v05.001.2020337183836.h5,VNP46A2. A2018116.h06v05.001.2020337195140.h5,VNP46A2.A2018117.h06v05.001.2020337204308.h5,VNP46 A2.A2018118.h06v05.001.2020337214623.h5,VNP46A2.A2018119.h06v05.001.2020337223544.h5,VN P46A2.A2018120.h06v05.001.2020337233749.h5, VNP46A2.A2018121.h06v05.001.2020338010046.h5, VNP46A2.A2018122.h06v05.001.2020338015520.h5, VNP46A2.A2018123.h06v05.001.2020338024337 .h5,VNP46A2.A2018124.h06v05.001.2020338034128.h5,VNP46A2.A2018125.h06v05.001.2020338044 549.h5, VNP46A2.A2018126.h06v05.001.2020338053612.h5, VNP46A2.A2018127.h06v05.001.2020338 063530.h5, VNP46A2.A2018128.h06v05.001.2020338075409.h5, VNP46A2.A2018129.h06v05.001.2020338075409.h5, VNP46A2.A2018129.h06v05.001.2020338075409.h06v05.001.2020338075409.h06v05.001.2020338075409.h06v05.001.2020338075409.h06v05.001.40200.h06v05.0000.h06v05338091216.h5,VNP46A2.A2018130.h06v05.001.2020338095029.h5,VNP46A2.A2018131.h06v05.001.2 020338104929.h5,VNP46A2.A2018132.h06v05.001.2020338112614.h5,VNP46A2.A2018133.h06v05.0 01.2020338121926.h5, VNP46A2.A2018134.h06v05.001.2020338131421.h5, VNP46A2.A2018135.h06v05.001.2020338131421.h5, VNP46A2.A2018135.h06v05.001.402003.h0005.h005.001.2020338142325.h5, VNP46A2.A2018136.h06v05.001.2020338153034.h5, VNP46A2.A2018137.h 06v05.001.2020338164127.h5,VNP46A2.A2018138.h06v05.001.2020338181746.h5,VNP46A2.A20181 39.h06v05.001.2020338190837.h5,VNP46A2.A2018140.h06v05.001.2020338195927.h5,VNP46A2.A20 18141.h06v05.001.2020338205217.h5,VNP46A2.A2018142.h06v05.001.2020338214256.h5,VNP46A2. A2018143.h06v05.001.2020338223253.h5,VNP46A2.A2018144.h06v05.001.2020338232351.h5,VNP46 A2.A2018145.h06v05.001.2020339003514.h5,VNP46A2.A2018146.h06v05.001.2020339014258.h5,VN P46A2.A2018147.h06v05.001.2020339025159.h5,VNP46A2.A2018148.h06v05.001.2020339035943.h5, VNP46A2.A2018149.h06v05.001.2020339045927.h5, VNP46A2.A2018150.h06v05.001.2020342113736 .h5,VNP46A2.A2018151.h06v05.001.2020342123846.h5,VNP46A2.A2018152.h06v05.001.2020342133 835.h5, VNP46A2.A2018153.h06v05.001.2020342142445.h5, VNP46A2.A2018154.h06v05.001.2020342 151307.h5,VNP46A2.A2018155.h06v05.001.2020342160322.h5,VNP46A2.A2018156.h06v05.001.2020 342171132.h5,VNP46A2.A2018157.h06v05.001.2020342182027.h5,VNP46A2.A2018158.h06v05.001.2 020342192608.h5,VNP46A2.A2018159.h06v05.001.2020342203228.h5,VNP46A2.A2018160.h06v05.0 01.2020342214151.h5.VNP46A2.A2018161.h06v05.001.2020342222100.h5.VNP46A2.A2018162.h06v 05.001.2020342225821.h5, VNP46A2.A2018163.h06v05.001.2020342233809.h5, VNP46A2.A2018164.h 06v05.001.2020343001654.h5,VNP46A2.A2018165.h06v05.001.2020343010356.h5,VNP46A2.A20181 66.h06v05.001.2020343015125.h5,VNP46A2.A2018167.h06v05.001.2020343023918.h5,VNP46A2.A20 18168.h06v05.001.2020343032842.h5,VNP46A2.A2018169.h06v05.001.2020343041958.h5,VNP46A2. A2018170.h06v05.001.2020343051517.h5,VNP46A2.A2018171.h06v05.001.2020343060407.h5,VNP46 A2.A2018172.h06v05.001.2020343064810.h5,VNP46A2.A2018173.h06v05.001.2020343072827.h5,VN P46A2.A2018174.h06v05.001.2020343082612.h5, VNP46A2.A2018175.h06v05.001.2020343091415.h5, VNP46A2.A2018176.h06v05.001.2020343102157.h5,VNP46A2.A2018177.h06v05.001.2020343111443 .h5,VNP46A2.A2018178.h06v05.001.2020343120908.h5,VNP46A2.A2018179.h06v05.001.2020343130 117.h5,VNP46A2.A2018180.h06v05.001.2020343140349.h5,VNP46A2.A2018181.h06v05.001.2020343 150739.h5,VNP46A2.A2018182.h06v05.001.2020343155445.h5,VNP46A2.A2018183.h06v05.001.2020 343164259.h5,VNP46A2.A2018184.h06v05.001.2020343172948.h5,VNP46A2.A2018185.h06v05.001.2 020343181842.h5,VNP46A2.A2018186.h06v05.001.2020343190314.h5,VNP46A2.A2018187.h06v05.0 01.2020343194858.h5.VNP46A2.A2018188.h06v05.001.2020343204138.h5.VNP46A2.A2018189.h06v 05.001.2020343212856.h5, VNP46A2.A2018190.h06v05.001.2020343222642.h5, VNP46A2.A2018191.h 06v05.001.2020343231735.h5,VNP46A2.A2018192.h06v05.001.2020343235424.h5,VNP46A2.A20181 93.h06v05.001.2020344002902.h5,VNP46A2.A2018194.h06v05.001.2020344010341.h5,VNP46A2.A20 18195.h06v05.001.2020344013818.h5,VNP46A2.A2018196.h06v05.001.2020344021310.h5,VNP46A2. A2018197.h06v05.001.2020344024631.h5,VNP46A2.A2018198.h06v05.001.2020344031936.h5,VNP46 A2.A2018199.h06v05.001.2020344035615.h5,VNP46A2.A2018200.h06v05.001.2020344043242.h5,VN P46A2.A2018201.h06v05.001.2020344050922.h5, VNP46A2.A2018202.h06v05.001.2020344054229.h5, VNP46A2.A2018203.h06v05.001.2020344061554.h5, VNP46A2.A2018204.h06v05.001.2020344064733 .h5,VNP46A2.A2018205.h06v05.001.2020344072948.h5,VNP46A2.A2018206.h06v05.001.2020344080 837.h5, VNP46A2.A2018207.h06v05.001.2020344091604.h5, VNP46A2.A2018208.h06v05.001.2020344 101454.h5,VNP46A2.A2018209.h06v05.001.2020344105623.h5,VNP46A2.A2018210.h06v05.001.2020 344120527.h5,VNP46A2.A2018211.h06v05.001.2020344134430.h5,VNP46A2.A2018212.h06v05.001.2 020344152335.h5,VNP46A2.A2018213.h06v05.001.2020344173437.h5,VNP46A2.A2018214.h06v05.0 01.2020344183101.h5.VNP46A2.A2018215.h06v05.001.2020344193509.h5.VNP46A2.A2018216.h06v 05.001.2020344202426.h5, VNP46A2.A2018217.h06v05.001.2020344225748.h5, VNP46A2.A2018218.h 06v05.001.2020345003737.h5,VNP46A2.A2018219.h06v05.001.2020345025257.h5,VNP46A2.A20182 20.h06v05.001.2020345043657.h5,VNP46A2.A2018221.h06v05.001.2020345055320.h5,VNP46A2.A20 18222.h06v05.001.2020345070806.h5,VNP46A2.A2018223.h06v05.001.2020345083400.h5,VNP46A2. A2018224.h06v05.001.2020345095156.h5,VNP46A2.A2018225.h06v05.001.2020345111703.h5,VNP46 A2.A2018226.h06v05.001.2020345130749.h5,VNP46A2.A2018227.h06v05.001.2020345140833.h5,VN P46A2.A2018228.h06v05.001.2020345153045.h5, VNP46A2.A2018229.h06v05.001.2020345194059.h5, VNP46A2.A2018230.h06v05.001.2020345205602.h5, VNP46A2.A2018231.h06v05.001.2020345222240 .h5.VNP46A2.A2018232.h06v05.001.2020345235807.h5.VNP46A2.A2018233.h06v05.001.2020346023 626.h5, VNP46A2.A2018234.h06v05.001.2020346034920.h5, VNP46A2.A2018235.h06v05.001.2020346 052855.h5, VNP46A2.A2018236.h06v05.001.2020346084333.h5, VNP46A2.A2018237.h06v05.001.2020346084333.h5, VNP46A2.A2018237.h06v05.001.2020346084333.h06v05.001.402009.h06v05.001.402009.h06v05.001.402009.h06v05.001.402009.h06v05.001.402009.h06v05.001.402009.h06v05.001.402009.h06v05.001.402009.h06v05.001.402009.h06v05.001.402009.h06v05.001.402009.h06v05.001.402009.h06v05.001.402009.h06v05.001.402009.h06v05.h06v0346103929.h5,VNP46A2.A2018238.h06v05.001.2020346124803.h5,VNP46A2.A2018239.h06v05.001.2
020346140019.h5,VNP46A2.A2018240.h06v05.001.2020346151851.h5,VNP46A2.A2018241.h06v05.0 01.2020346170452.h5,VNP46A2.A2018242.h06v05.001.2020346182152.h5,VNP46A2.A2018243.h06v 05.001.2020346214221.h5, VNP46A2.A2018244.h06v05.001.2020346234030.h5, VNP46A2.A2018245.h 06v05.001.2020347023239.h5,VNP46A2.A2018246.h06v05.001.2020347054843.h5,VNP46A2.A20182 47.h06v05.001.2020347073934.h5,VNP46A2.A2018248.h06v05.001.2020347091435.h5,VNP46A2.A20 18249.h06v05.001.2020347104755.h5,VNP46A2.A2018250.h06v05.001.2020347121451.h5,VNP46A2. A2018251.h06v05.001.2020347150456.h5,VNP46A2.A2018252.h06v05.001.2020347164012.h5,VNP46 A2.A2018253.h06v05.001.2020347185314.h5,VNP46A2.A2018254.h06v05.001.2020347201730.h5,VN P46A2.A2018255.h06v05.001.2020347214839.h5, VNP46A2.A2018256.h06v05.001.2020348005422.h5, VNP46A2.A2018257.h06v05.001.2020348015041.h5, VNP46A2.A2018258.h06v05.001.2020348035601 .h5.VNP46A2.A2018259.h06v05.001.2020348054728.h5.VNP46A2.A2018260.h06v05.001.2020348072 023.h5,VNP46A2.A2018261.h06v05.001.2020348084204.h5,VNP46A2.A2018262.h06v05.001.2020348 100932.h5,VNP46A2.A2018263.h06v05.001.2020348114403.h5,VNP46A2.A2018264.h06v05.001.2020 348125123.h5,VNP46A2.A2018265.h06v05.001.2020348135442.h5,VNP46A2.A2018266.h06v05.001.2 020348145003.h5,VNP46A2.A2018267.h06v05.001.2020348154721.h5,VNP46A2.A2018268.h06v05.0 01.2020348164239.h5,VNP46A2.A2018269.h06v05.001.2020348173952.h5,VNP46A2.A2018270.h06v 05.001.2020348183516.h5, VNP46A2.A2018271.h06v05.001.2020348193134.h5, VNP46A2.A2018272.h 06v05.001.2020348202627.h5,VNP46A2.A2018273.h06v05.001.2020348212158.h5,VNP46A2.A20182 74.h06v05.001.2020348221828.h5, VNP46A2.A2018275.h06v05.001.2020348233418.h5, VNP46A2.A2018275.h06v0518276.h06v05.001.2020349003034.h5,VNP46A2.A2018277.h06v05.001.2020349012831.h5,VNP46A2. A2018278.h06v05.001.2020349024409.h5,VNP46A2.A2018279.h06v05.001.2020349033911.h5,VNP46 A2.A2018280.h06v05.001.2020349043254.h5,VNP46A2.A2018281.h06v05.001.2020349052656.h5,VN P46A2.A2018282.h06v05.001.2020349062137.h5, VNP46A2.A2018283.h06v05.001.2020349071637.h5, VNP46A2.A2018284.h06v05.001.2020349080920.h5, VNP46A2.A2018285.h06v05.001.2020349090228 .h5.VNP46A2.A2018286.h06v05.001.2020349095417.h5.VNP46A2.A2018287.h06v05.001.2020349104 840.h5, VNP46A2.A2018288.h06v05.001.2020349114402.h5, VNP46A2.A2018289.h06v05.001.2020349 123800.h5, VNP46A2.A2018290.h06v05.001.2020349133141.h5, VNP46A2.A2018291.h06v05.001.2020349133141.h5, VNP46A2.A2018291.h06v05.001.202034913141.h06v05.001.h06v05.001.h06v05.001.h06v05.001.h06v05.001.h06v05.001.h06v05.h06v0349140840.h5, VNP46A2.A2018292.h06v05.001.2020349144528.h5, VNP46A2.A2018293.h06v05.001.2 020349161958.h5,VNP46A2.A2018294.h06v05.001.2020349180002.h5,VNP46A2.A2018295.h06v05.0 01.2020349203552.h5,VNP46A2.A2018296.h06v05.001.2020349231401.h5,VNP46A2.A2018297.h06v 05.001.2020350024128.h5, VNP46A2.A2018298.h06v05.001.2020350040351.h5, VNP46A2.A2018299.h 06v05.001.2020350045539.h5,VNP46A2.A2018300.h06v05.001.2020353104905.h5,VNP46A2.A20183 01.h06v05.001.2020353113627.h5, VNP46A2.A2018302.h06v05.001.2020353123304.h5, VNP46A2.A2018302.h06v05.001.h06v05.h018303.h06v05.001.2020353133751.h5,VNP46A2.A2018304.h06v05.001.2020353142358.h5,VNP46A2. A2018305.h06v05.001.2020353151820.h5,VNP46A2.A2018306.h06v05.001.2020353160940.h5,VNP46 A2.A2018307.h06v05.001.2020353171845.h5,VNP46A2.A2018308.h06v05.001.2020353184248.h5,VN P46A2.A2018309.h06v05.001.2020353192234.h5, VNP46A2.A2018310.h06v05.001.2020353202334.h5, VNP46A2.A2018311.h06v05.001.2020353210243.h5, VNP46A2.A2018312.h06v05.001.2020353215544 .h5.VNP46A2.A2018313.h06v05.001.2020353224851.h5.VNP46A2.A2018314.h06v05.001.2020353234 934.h5,VNP46A2.A2018315.h06v05.001.2020354004353.h5,VNP46A2.A2018316.h06v05.001.2020354 013611.h5,VNP46A2.A2018317.h06v05.001.2020354023708.h5,VNP46A2.A2018318.h06v05.001.2020 354033329.h5,VNP46A2.A2018319.h06v05.001.2020354041114.h5,VNP46A2.A2018320.h06v05.001.2 020354045346.h5,VNP46A2.A2018321.h06v05.001.2020354053855.h5,VNP46A2.A2018322.h06v05.0 01.2020354063855.h5,VNP46A2.A2018323.h06v05.001.2020354072912.h5,VNP46A2.A2018324.h06v 05.001.2020354082656.h5, VNP46A2.A2018325.h06v05.001.2020354092716.h5, VNP46A2.A2018326.h 06v05.001.2020354101816.h5,VNP46A2.A2018327.h06v05.001.2020354110227.h5,VNP46A2.A20183 28.h06v05.001.2020354115219.h5,VNP46A2.A2018329.h06v05.001.2020354122922.h5,VNP46A2.A20 18330.h06v05.001.2020354130713.h5.VNP46A2.A2018331.h06v05.001.2020354134430.h5.VNP46A2. A2018332.h06v05.001.2020354142339.h5,VNP46A2.A2018333.h06v05.001.2020354150553.h5,VNP46 A2.A2018334.h06v05.001.2020354154848.h5,VNP46A2.A2018335.h06v05.001.2020354163307.h5,VN P46A2.A2018336.h06v05.001.2020354171934.h5, VNP46A2.A2018337.h06v05.001.2020354175338.h5, VNP46A2.A2018338.h06v05.001.2020354182818.h5, VNP46A2.A2018339.h06v05.001.2020354190214 .h5,VNP46A2.A2018340.h06v05.001.2020354194513.h5,VNP46A2.A2018341.h06v05.001.2020354201 958.h5, VNP46A2.A2018342.h06v05.001.2020354205438.h5, VNP46A2.A2018343.h06v05.001.2020354 212816.h5,VNP46A2.A2018344.h06v05.001.2020354220348.h5,VNP46A2.A2018345.h06v05.001.2020 354223856.h5,VNP46A2.A2018346.h06v05.001.2020354232234.h5,VNP46A2.A2018347.h06v05.001.2 020355000514.h5,VNP46A2.A2018348.h06v05.001.2020355004149.h5,VNP46A2.A2018349.h06v05.0 01.2020355012524.h5,VNP46A2.A2018350.h06v05.001.2020355015845.h5,VNP46A2.A2018351.h06v 05.001.2020355023238.h5, VNP46A2.A2018352.h06v05.001.2020355030726.h5, VNP46A2.A2018353.h 06v05.001.2020355041246.h5,VNP46A2.A2018354.h06v05.001.2020355045822.h5,VNP46A2.A20183 55.h06v05.001.2020355055739.h5,VNP46A2.A2018356.h06v05.001.2020355063924.h5,VNP46A2.A20 ``` 18357.h06v05.001.2020355072007.h5.VNP46A2.A2018358.h06v05.001.2020355075950.h5.VNP46A2. A2018359.h06v05.001.2020355084737.h5,VNP46A2.A2018360.h06v05.001.2020355092720.h5,VNP46 A2.A2018361.h06v05.001.2020355100743.h5,VNP46A2.A2018362.h06v05.001.2020355104927.h5,VN P46A2.A2018363.h06v05.001.2020355113341.h5,VNP46A2.A2018364.h06v05.001.2020355122045.h5, VNP46A2.A2018365.h06v05.001.2020355130531.h5 LocalGranuleID = VNP46A4.A2018001.h06v05.002.2021056214106.h5 LongName = VIIRS/NPP Lunar BRDF-Adjusted Nighttime Lights Yearly L3 Global 15 arc-second Linear Lat Lon Grid NumberofInputGranules = 365 PGENumber = 557 PGEVersion = 2.0.0 PGE EndTime = 2019-01-01 00:00:00.000 PGE Name = PGE557 PGE StartTime = 2018-01-01 00:00:00.000 PlatformShortName = SUOMI-NPP ProcessVersion = 002 ProcessingCenter = LandSIPS ProcessingEnvironment = Linux minion7013 3.10.0-1160.11.1.el7.x86_64 #1 SMP Fri Dec 18 16:34:56 UTC 2020 x86 64 x86 64 x86 64 GNU/Linux ProductionTime
= 2021-02-25 21:41:06.000 RangeBeginningDate = 2018-01-01 RangeBeginningTime = 00:00:00.000000 RangeEndingDate = 2018-12-31 RangeEndingTime = 23:59:00.000000 SatelliteInstrument = NPP OPS SensorShortname = VIIRS ShortName = VNP46A4 StartTime = 2018-01-01 00:00:00 TileID = 61006005 VersionID = 002 VerticalTileNumber = 05 identifier product doi = 10.5067/VIIRS/VNP46A4.002 identifier product doi authority = https://doi.org variables: short AllAngle Composite Snow Covered(fakeDim0, fakeDim1); AllAngle Composite Snow Covered: FillValue = -1s; AllAngle Composite Snow Covered:long name = "Temporal Radiance Composite Using All Observations During Snow-covered Period"; AllAngle Composite Snow Covered:units = "nWatts/(cm^2 sr)"; AllAngle Composite Snow Covered:valid range = 0s, -2s; AllAngle Composite Snow Covered:scale factor = 0.1; AllAngle Composite Snow Covered:offset = 0.; AllAngle Composite Snow Covered:coordinates = "latitude longitude"; short AllAngle Composite Snow Covered Num(fakeDim2, fakeDim3); AllAngle Composite Snow Covered Num: FillValue = -1s; AllAngle Composite Snow Covered Num:long name = "Number of Observations of Temporal Radiance Composite Using All Observations During Snow-covered Period"; AllAngle Composite Snow Covered Num:units = "number of observations"; AllAngle Composite Snow Covered Num:valid range = 0s, -2s; ``` AllAngle_Composite_Snow_Covered_Num:scale_factor = 1.; AllAngle_Composite_Snow_Covered_Num:offset = 0.; ``` AllAngle Composite Snow Covered Num:coordinates = "latitude longitude"; byte AllAngle Composite Snow Covered Quality(fakeDim4, fakeDim5); AllAngle Composite Snow Covered Quality: FillValue = '\377'; AllAngle Composite Snow Covered Quality:long name = "Quality Flag of Temporal Radiance Composite Using All Observations During Snow-covered Period"; AllAngle Composite Snow Covered Quality:units = "quality flag, no units"; AllAngle Composite Snow Covered Quality:valid range = '\0', '\376'; AllAngle Composite Snow Covered Quality:scale factor = 1.; AllAngle Composite Snow Covered Quality:offset = 0.; AllAngle Composite Snow Covered Quality:Description = "Quality:\n", "\t 0 = Good quality \n", "\t 1 = Poor quality \n", "\t 2 = \text{Gap filled} \setminus n", "\t 255 = \hat{F}ill \ value \ n", "\t": AllAngle Composite Snow Covered Quality:coordinates = "latitude longitude"; short AllAngle Composite Snow Covered Std(fakeDim6, fakeDim7); AllAngle Composite Snow Covered Std: FillValue = -1s; AllAngle Composite Snow Covered Std:long name = "Standard Deviation of Temporal Radiance Composite Using All Observations During Snow-covered Period"; AllAngle Composite Snow Covered Std:units = "nWatts/(cm^2 sr)"; AllAngle Composite Snow Covered Std:valid range = 0s, -2s; AllAngle Composite Snow Covered Std:scale factor = 0.1; AllAngle Composite Snow Covered Std:offset = 0.; AllAngle Composite Snow Covered Std:coordinates = "latitude longitude"; short AllAngle Composite Snow Free(fakeDim8, fakeDim9); AllAngle Composite Snow Free: FillValue = -1s; AllAngle Composite Snow Free:long name = "Temporal Radiance Composite Using All Observations During Snow-free Period"; AllAngle Composite Snow Free:units = "nWatts/(cm^2 sr)"; AllAngle Composite Snow Free:valid range = 0s, -2s; AllAngle Composite Snow Free:scale factor = 0.1; AllAngle Composite Snow Free:offset = 0.; AllAngle Composite Snow Free:coordinates = "latitude longitude"; short AllAngle Composite Snow Free Num(fakeDim10, fakeDim11); AllAngle Composite Snow Free Num: FillValue = -1s; AllAngle Composite Snow Free Num:long name = "Number of Observations of Temporal Radiance Composite Using All Observations During Snow-free Period": AllAngle Composite Snow Free Num:units = "number of observations"; AllAngle Composite Snow Free Num:valid range = 0s, -2s; AllAngle Composite Snow Free Num:scale factor = 1.; AllAngle Composite Snow Free Num:offset = 0.; AllAngle Composite Snow Free Num:coordinates = "latitude longitude"; byte AllAngle Composite Snow Free Quality(fakeDim12, fakeDim13); AllAngle Composite Snow Free Quality: FillValue = '\377'; AllAngle Composite Snow Free Quality:long name = "Quality Flag of Temporal Radiance Composite Using All Observations During Snow-free Period"; AllAngle Composite Snow Free Quality:units = "quality flag, no units"; AllAngle Composite Snow Free Quality:valid range = '\0', '\376'; AllAngle Composite Snow Free Quality:scale factor = 1.; AllAngle Composite Snow Free Quality:offset = 0.; ``` ``` AllAngle Composite Snow Free Quality:Description = "Quality:\n", "\t 0 = Good quality \n", "\t 1 = Poor quality\n", "\t 2 = \text{Gap filled} \setminus n", "\t 255 = \text{Fill value} \text{ n}", "\t": AllAngle Composite Snow Free Quality:coordinates = "latitude longitude"; short AllAngle Composite Snow Free Std(fakeDim14, fakeDim15); AllAngle Composite Snow Free Std: FillValue = -1s; AllAngle Composite Snow Free Std:long name = "Standard Deviation of Temporal Radiance Composite Using All Observations During Snow-free Period"; AllAngle Composite Snow Free Std:units = "nWatts/(cm^2 sr)"; AllAngle Composite Snow Free Std:valid range = 0s, -2s; AllAngle Composite Snow Free Std:scale factor = 0.1; AllAngle Composite Snow Free Std:offset = 0.; AllAngle Composite Snow Free Std:coordinates = "latitude longitude"; byte DNB Platform(fakeDim16, fakeDim17); DNB Platform: FillValue = '\377'; DNB Platform:long name = "Platform"; DNB Platform:units = "platform, no units"; DNB Platform:valid range = '\0', '\376'; DNB Platform:scale factor = 1.; DNB Platform:offset = 0.; DNB Platform: Description = "Platform:\n", "\t 0 = \text{Suomi-NPP} \setminus n", "\t 1 = NOAA-20\n", "\t 2 = Suomi-NPP and NOAA-20 combined \n", "\t": DNB Platform:coordinates = "latitude longitude"; byte Land Water Mask(fakeDim18, fakeDim19); Land Water Mask: FillValue = '\377'; Land Water Mask:long name = "Land Water Mask"; Land Water Mask:units = "land water mask, no units"; Land Water Mask:valid range = '\0', '\376'; Land Water Mask:scale factor = 1.; Land Water Mask:offset = 0.; Land Water Mask:Description = "Land/Water:\n", "\t 0 = \text{Land \& Desert } \n". "\t 1 = \text{Land no Desert } n", "\t 2 = Inland Water \n", "\t 3 = \text{Sea Water } \n", "\t 5 = \text{Coastal } n", "\t"; Land Water Mask:coordinates = "latitude longitude"; short NearNadir Composite Snow Covered(fakeDim20, fakeDim21); NearNadir Composite Snow Covered: FillValue = -1s; NearNadir Composite Snow Covered:long name = "Temporal Radiance Composite Using Nadir Angle Observations (View Zenith Angle 0-20 degree) During Snow-covered Period"; NearNadir Composite Snow Covered:units = "nWatts/(cm^2 sr)"; NearNadir Composite Snow Covered:valid range = 0s, -2s; NearNadir Composite Snow Covered:scale factor = 0.1; ``` ``` NearNadir Composite Snow Covered:offset = 0.; NearNadir Composite Snow Covered:coordinates = "latitude longitude"; short NearNadir Composite Snow Covered Num(fakeDim22, fakeDim23); NearNadir Composite Snow Covered Num: FillValue = -1s; NearNadir Composite Snow Covered Num:long name = "Number of Observations of Temporal Radiance Composite Using Nadir Angle Observations (View Zenith Angle 0-20 degree) During Snow-covered Period"; NearNadir Composite Snow Covered Num:units = "number of observations"; NearNadir Composite Snow Covered Num:valid range = 0s, -2s; NearNadir Composite Snow Covered Num:scale factor = 1.; NearNadir Composite Snow Covered Num:offset = 0.; NearNadir Composite Snow Covered Num:coordinates = "latitude longitude"; byte NearNadir Composite Snow Covered Quality(fakeDim24, fakeDim25); NearNadir Composite Snow Covered Quality: FillValue = '\377'; NearNadir Composite Snow Covered Quality:long name = "Quality Flag of Temporal Radiance Composite Using Nadir Angle Observations (View Zenith Angle 0-20 degree) During Snow- covered Period"; NearNadir Composite Snow Covered Quality:units = "quality flag, no units"; NearNadir Composite Snow Covered Quality:valid range = '\0', '\376'; NearNadir Composite Snow Covered Quality:scale factor = 1.; NearNadir Composite Snow Covered Quality:offset = 0.; NearNadir Composite Snow Covered Quality:Description = "Quality:\n", "\t 0 = Good quality \n", "\t 1 = Poor quality \n", "\t 2 = \text{Gap filled} \", "\t 255 = \text{Fill value} \text{ n}", "\t"; NearNadir Composite Snow Covered Quality:coordinates = "latitude longitude"; short NearNadir Composite Snow Covered Std(fakeDim26, fakeDim27); NearNadir Composite Snow Covered Std: FillValue = -1s; NearNadir Composite Snow Covered Std:long name = "Standard Deviation of Temporal Radiance Composite Using Nadir Angle Observations (View Zenith Angle 0-20 degree) During Snow- covered Period"; NearNadir Composite Snow Covered Std:units = "nWatts/(cm^2 sr)"; NearNadir Composite Snow Covered Std:valid range = 0s, -2s; NearNadir Composite Snow Covered Std:scale factor = 0.1; NearNadir Composite Snow Covered Std:offset = 0.; NearNadir Composite Snow Covered Std:coordinates = "latitude longitude"; short NearNadir Composite Snow Free(fakeDim28, fakeDim29); NearNadir Composite Snow Free: FillValue = -1s; NearNadir Composite Snow Free:long name = "Temporal Radiance Composite Using Nadir Angle Observations (View Zenith Angle 0-20 degree) During Snow-free Period"; NearNadir Composite Snow Free:units = "nWatts/(cm^2 sr)"; NearNadir Composite Snow Free:valid range = 0s, -2s; NearNadir Composite Snow Free:scale factor = 0.1; NearNadir Composite Snow Free:offset = 0.; NearNadir Composite Snow Free:coordinates = "latitude longitude"; short NearNadir Composite Snow Free Num(fakeDim30, fakeDim31); NearNadir Composite Snow Free Num: FillValue = -1s; ``` ``` NearNadir Composite Snow Free Num:long name = "Number of Observations of Temporal Radiance Composite Using Nadir Angle Observations (View Zenith Angle 0-20 degree) During Snow- free Period"; NearNadir Composite Snow Free Num:units = "number of observations"; NearNadir Composite Snow Free Num:valid range = 0s, -2s; NearNadir Composite Snow Free Num:scale factor = 1.; NearNadir
Composite Snow Free Num:offset = 0.; NearNadir Composite Snow Free Num:coordinates = "latitude longitude"; byte NearNadir Composite Snow Free Quality(fakeDim32, fakeDim33); NearNadir Composite Snow Free Quality: FillValue = '\377'; NearNadir Composite Snow Free Quality:long name = "Quality Flag of Temporal Radiance Composite Using Nadir Angle Observations (View Zenith Angle 0-20 degree) During Snow-free Period" NearNadir Composite Snow Free Quality:units = "quality flag, no units"; NearNadir Composite Snow Free Quality:valid range = '\0', '\376': NearNadir Composite Snow Free Quality:scale factor = 1.; NearNadir Composite Snow Free Quality:offset = 0.; NearNadir Composite Snow Free Quality: Description = "Quality:\n", "\t 0 = Good quality \n", "\t 1 = Poor quality\n", "\t 2 = \text{Gap filled} \setminus n", "\t 255 = \text{Fill value} \text{n}", "\t"; NearNadir Composite Snow Free Quality:coordinates = "latitude longitude"; short NearNadir Composite Snow Free Std(fakeDim34, fakeDim35); NearNadir Composite Snow Free Std: FillValue = -1s; NearNadir Composite Snow Free Std:long name = "Standard Deviation of Temporal Radiance Composite Using Nadir Angle Observations (View Zenith Angle 0-20 degree) During Snow- free Period"; NearNadir Composite Snow Free Std:units = "nWatts/(cm^2 sr)"; NearNadir Composite Snow Free Std:valid range = 0s, -2s; NearNadir Composite Snow Free Std:scale factor = 0.1; NearNadir Composite Snow Free Std:offset = 0.; NearNadir Composite Snow Free Std:coordinates = "latitude longitude"; short OffNadir Composite Snow Covered(fakeDim36, fakeDim37); OffNadir Composite Snow Covered: FillValue = -1s; OffNadir Composite Snow Covered:long name = "Temporal Radiance Composite Using Off Nadir Angle Observations (View Zenith Angle 40-60 degree) During Snow-covered Period": OffNadir Composite Snow Covered:units = "nWatts/(cm^2 sr)"; OffNadir Composite Snow Covered:valid range = 0s, -2s; OffNadir Composite Snow Covered:scale factor = 0.1; OffNadir Composite Snow Covered:offset = 0.; OffNadir Composite Snow Covered:coordinates = "latitude longitude"; short OffNadir Composite Snow Covered Num(fakeDim38, fakeDim39); OffNadir Composite Snow Covered Num: FillValue = -1s; OffNadir Composite Snow Covered Num:long name = "Number of Observations of Temporal Radiance Composite Using Off Nadir Angle Observations (View Zenith Angle 40-60 degree) During Snow-covered Period"; OffNadir Composite Snow Covered Num:units = "number of observations"; OffNadir Composite Snow Covered Num:valid range = 0s, -2s; OffNadir Composite Snow Covered Num:scale factor = 1.; ``` ``` OffNadir Composite Snow Covered Num:offset = 0.: OffNadir Composite Snow Covered Num:coordinates = "latitude longitude"; byte OffNadir Composite Snow Covered Quality(fakeDim40, fakeDim41); OffNadir Composite Snow Covered Quality: FillValue = '\377'; OffNadir Composite Snow Covered Quality:long name = "Quality Flag of Temporal Radiance Composite Using Off Nadir Angle Observations (View Zenith Angle 40-60 degree) During Snow-covered Period"; OffNadir Composite Snow Covered Quality:units = "quality flag, no units"; OffNadir Composite Snow Covered Quality:valid range = '\0', '\376'; OffNadir Composite Snow Covered Quality:scale factor = 1.; OffNadir Composite Snow Covered Quality:offset = 0.; OffNadir Composite Snow Covered Quality:Description = "Quality:\n", "\t 0 = Good quality \n", "\t 1 = Poor quality \n", "\t 2 = \text{Gap filled} \". "\t 255 = \text{Fill value} \text{n}", "\t"; OffNadir Composite Snow Covered Quality:coordinates = "latitude longitude"; short OffNadir Composite Snow Covered Std(fakeDim42, fakeDim43); OffNadir Composite Snow Covered Std: FillValue = -1s; OffNadir Composite Snow Covered Std:long name = "Standard Deviation of Temporal Radiance Composite Using Off Nadir Angle Observations (View Zenith Angle 40-60 degree) During Snow-covered Period"; OffNadir Composite Snow Covered Std:units = "nWatts/(cm^2 sr)"; OffNadir Composite Snow Covered Std:valid range = 0s, -2s; OffNadir Composite Snow Covered Std:scale factor = 0.1; OffNadir Composite Snow Covered Std:offset = 0.; OffNadir Composite Snow Covered Std:coordinates = "latitude longitude"; short OffNadir Composite Snow Free(fakeDim44, fakeDim45); OffNadir Composite Snow Free: FillValue = -1s; OffNadir Composite Snow Free:units = "nWatts/(cm^2 sr)"; OffNadir Composite Snow Free:long name = "Temporal Radiance Composite Using Off Nadir Angle Observations (View Zenith Angle 40-60 degree) During Snow-free Period"; OffNadir Composite Snow Free:valid range = 0s, -2s; OffNadir Composite Snow Free:scale factor = 0.1; OffNadir Composite Snow Free:offset = 0.; OffNadir Composite Snow Free:coordinates = "latitude longitude"; short OffNadir Composite Snow Free Num(fakeDim46, fakeDim47): OffNadir Composite Snow Free Num: FillValue = -1s; OffNadir Composite Snow Free Num:long name = "Number of Observations of Temporal Radiance Composite Using Off Nadir Angle Observations (View Zenith Angle 40-60 degree) During Snow-free Period"; OffNadir Composite Snow Free Num:units = "number of observations"; OffNadir Composite Snow Free Num:valid range = 0s, -2s; OffNadir Composite Snow Free Num:scale factor = 1.; OffNadir Composite Snow Free Num:offset = 0.; OffNadir Composite Snow Free Num:coordinates = "latitude longitude"; byte OffNadir Composite Snow Free Quality(fakeDim48, fakeDim49); OffNadir Composite Snow Free Quality: FillValue = '\377'; ``` ``` OffNadir Composite Snow Free Quality:long name = "Quality Flag of Temporal Radiance Composite Using Off Nadir Angle Observations (View Zenith Angle 40-60 degree) During Snow-free Period"; OffNadir Composite Snow Free Quality:units = "quality flag, no units"; OffNadir Composite Snow Free Quality:valid range = '\0', '\376'; OffNadir Composite Snow Free Quality:scale factor = 1.; OffNadir Composite Snow Free Quality:offset = 0.; OffNadir Composite Snow Free Quality:Description = "Quality:\n", "\t 0 = Good quality \n", "\t 1 = Poor quality \n", "\t 2 = \text{Gap filled} \setminus n", "\t 255 = \text{Fill value} \text{ n}", "\t"; OffNadir Composite Snow Free Quality:coordinates = "latitude longitude"; short OffNadir Composite Snow Free Std(fakeDim50, fakeDim51); OffNadir Composite Snow Free Std: FillValue = -1s; OffNadir Composite Snow Free Std:long name = "Standard Deviation of Temporal Radiance Composite Using Off Nadir Angle Observations (View Zenith Angle 40-60 degree) During Snow-free Period": OffNadir Composite Snow Free Std:units = "nWatts/(cm^2 sr)"; OffNadir Composite Snow Free Std:valid range = 0s, -2s; OffNadir Composite Snow Free Std:scale factor = 0.1; OffNadir Composite Snow Free Std:offset = 0.; OffNadir Composite Snow Free Std:coordinates = "latitude longitude"; double lat(fakeDim52); lat:long name = "latitude"; lat:units = "degrees north"; lat: CoordinateAxisType = "Lat" : double lon(fakeDim53); lon:long name = "longitude"; lon:units = "degrees east"; lon: CoordinateAxisType = "Lon" ; ```